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Course Goals
Use of Probability and Statistics to Interpret Experimental Data

Probability
I definition, interpretation, Bayes’ Theorem, random variables,

probability distributions, expectation values, error propagation, . . .
Monte Carlo Methods

I random number generators, PDF transformation, acceptance-rejection
Method of Maximum Likelihood

I likelihood, ML estimators, extended ML, binned ML, variance of ML
Method of Least Squares

I goodness of fit, relation to maximum likelihood
Interval Estimation

I confidence intervals, lower and upper limits, significance, coverage
Multivariate Techniques

I decision trees, boosting, machine learning, . . .
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Course Contacts

Segev BenZvi
Instructor

I B&L 405
I (585) 276-7172
I sybenzvi@pas.rochester.edu
I Office Hours: Th 2:00 - 3:00

Brian Coopersmith
TA

I B&L 373
I (585) 275-4001
I coopersmithbrian@gmail.com
I Office Hours: W 12:45 - 1:45
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Course Format

Lectures:
I M,W 9:30-10:50. Lectures posted on BlackBoard

Grading:
I 45% HW, 25% final project, 20% midterm, 10% lecture participation
I Bi-weekly problem sets (theory and practical examples with a

programming component), due Friday @ 5 pm
I Final project on a topic of your choice

I Your current research, previous result, . . .
I ∼ 20 minute presentations, starting last 3 lectures
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Textbooks

There are two textbooks used in this course, both relatively concise:

Cowan [1]: good introduction to
“frequentist” statistics and data
analysis as practiced in HEP

Sivia [2]: introduction to “Bayesian”
statistics with applications and
examples
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Additional Material
Supplementary material is on reserve in POA:

I Barlow [3], Lyons [4]: statistics for physicists with many examples.
Focus on particle physics (both authors are in HEP) but generally
applicable

I Jaynes [5]: Bayesian probability as an extension of logic
I Numerical Recipes [6]: book on algorithms and data analysis, easy to

read; a great reference
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Homework

There will be 6 to 7 bi-weekly problem sets assigned during the semester:
I Solutions will be due every other Friday at 5 pm
I Some problems will require analytical solutions; others will have strong

numerical, programming, and data analysis components
I You may informally discuss the problems with other students but your

work must be your own
I Some problems could take time to solve. Don’t put off the homework

until the last minute
I Show your work! Problems that require programming and data

analysis must include printed source code with your solutions or you
won’t get credit
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Software

This is not a software course, but you’ll have to write basic programs
(usually < 100 lines) for data analysis. Useful software includes:

I Python: interpreted language with huge user community and
excellent analysis and plotting packages (numpy, scipy, etc.)

I ROOT: C++ statistics package and plotting library from CERN, used
in HEP. Has python bindings!

I GSL: GNU Scientific Library, very handy, written in C
I Mathematica, R, . . . : use if you wish, but if you run into problems

don’t expect support from us

Typical open-source computing environment: Linux, Python
I See posted lecture on Linux and next week’s lecture on programming
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Computing Methods Used in the Course

Data analysis will require you to become fluent with the following
techniques:

I Random number generation and sampling
I Solving systems of linear equations (linear algebra)
I Matrix manipulation and inversion
I Numerical integration
I Minimization of linear and nonlinear functions
I Plotting: scatterplots, histograms, contour plots, corner plots

You’ll need to understand how these methods work, but don’t reinvent the
wheel. I.e., don’t write your own linear algebra library!
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A Word About Plotting

To receive credit, plots must be clearly readable, measurements should
have error bars, and axes must be labeled (including units).

Beware of default plotting behavior like spurious lines between data points.
Don’t let yourself look like an amateur!
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Physics and Data Analysis

Two types of experimental inference:

Hypothesis testing, a test of a theory
or model.

I How consistent are data with a
given model?

I Which of several models best
describes the data?

Parameter estimation, the
measurement of a quantity.

I What is the best estimate of the
parameter?

I How well did we make the
measurement (uncertainty)?

Parameter estimation using CMB data [7].
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Deduction vs. Induction (Plausible Reasoning)

How does inference work in math and science?
Deduction: given a cause, we work out its effects.

Example
If a fair coin is flipped 10 times, what is the chance that 7 times it will
come up heads?

Induction: given a set of effects we identify plausible underlying causes.

Example
If a coin was flipped 10 times and yielded 7 heads, what is the probability
that it is a fair coin?

Scientific inference works by induction. Given a set of measurements we
make plausible inferences about their origin, using the language of
probability.
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What is Probability?

There is not universal agreement on what probability means, and this does
affect you. Three suggested interpretations:
1. Propensity. Ex.: an unbiased coin has a “propensity” 1/2 to land

heads or tails. I.e., 1/2 is a property of the coin.
2. Degree of belief. Ex.: your belief that a coin is unbiased means you

assign probability 1/2 to the proposition “the coin will land heads.”
3. Relative frequency. Ex.: the relative frequency with which heads

appears in a sequence of infinite tosses of an unbiased coin is 1/2.

Questions:
I Which of these seems most reasonable to you?
I Is one more “fundamental” than the others?
I How can scientists compare independent measurements and draw

conclusions?
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The Meaning of Probability
Propensity

I Q: why does a given kind of experiment
generate a given outcome at a
persistent rate?

I A: probability is physical property, like
particle decay in Quantum Mechanics.

I Problem: we don’t observe the intrinsic
probability, just the outcome.

I Problem: how to quantify ignorance?

Example
I flip a coin and look at the result.

I You: 50% probability the coin is tails.

I Me: the coin is tails w/ 100% probability.

Karl Popper:“In so far as

a scientific statement speaks

about reality, it must be falsi-

fiable; and in so far as it is not

falsifiable, it does not speak

about reality [8].”
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The Meaning of Probability
Relative Frequency, or “Frequentist Statistics”

I Probability & chance come from ignorance of
physical causes, not intrinsic physical properties.

I We can’t or don’t usually need to care about
causes, just the “objective” consistency of
long-run outcomes.

I Appeal: we observe outcomes and relative
frequencies all the time in controlled
experiments!

I Problem: very awkward to talk about
non-repeatable phenomena. Invoke “ensembles”
of hypothetical identical systems.

I Problem: how to “objectively” identify an
ensemble?

John Venn:“On the view here

adopted we are concerned

only with averages, or with

the single event as deduced

from an average and con-

ceived to form one of a se-

ries [9].”
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The Meaning of Probability
Degree of Belief, or “Bayesian Statistics”

I Probability quantifies our knowledge or
ignorance of a situation given “data” plus our a
priori beliefs.

I Degree of belief is always subjective, but
can/should be revised as we learn (a.k.a.,
“acquire new data”).

I Appeal: this is common sense, and describes
scientific inference very well.

I Problem: how do we quantify our a priori
beliefs, i.e., our beliefs before taking any data?

I Problem: if probability is subjective, how can
we achieve consensus?

Laplace:“Probability theory

is only common sense re-

duced to calculation.”
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Frequentist and Bayesian Statistics

The “propensity” view is not common but you will often encounter both
frequentist and Bayesian approaches.
Bayesian

I Data are known and fixed;
calculate probability of a
hypothesis given data.

I Fundamental; a generalization of
deductive logic.

I Well-defined procedure for
calculating a probability.

I Must quantify prior knowledge
of parameters/hypotheses, even
if your “knowledge” is total
ignorance. Can be HARD!

Frequentist
I Model parameters are unknown

but fixed; calculate probability of
data given a hypothesis.

I Under limited circumstances,
guarantees experiments obey
long-run relative frequencies.

I Uses “random variables” to
model the outcome of
unobserved data.

I Ad hoc, “cookbook” approach to
statistics.
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Deductive Logic and Boolean Algebra

How to combine premises A and B which can be true (1) or false (0):

I A+ B: logical disjunction (OR): e.g., “A or B” is true
I AB: logical conjunction (AND): e.g., “A and B” are both true
I A: logical negation (NOT): e.g., “not A” is true
I =⇒ : implication: infer something from several premises (syllogism)

Comment: A =⇒ B (read “A implies B”) does not mean either A or B is
true. Instead, it means

A = AB.

If A is true then B must be true. If B is false then A must be false.

Example
A = “it is raining”, B = “it is cloudy”.
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Truth Tables
A handy visual trick to combine premises A and B which can be true (1) or
false (0) is to use a truth table:

A B A+ B AB A+ B AB

0 0 0 0 1 1
0 1 1 0 0 1
1 1 1 1 0 0
1 0 1 0 0 1

A B A+ B A B

1 1 1 1
1 0 1 0
0 0 0 0
0 1 1 0

I Note: AB = A+ B : “not(A and B) = not(A) or not(B)”
I Note: A B = A+ B : “not(A) and not(B) = not(A or B)”
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Basic Logic Identities
Often Used in Programming and Digital Logic

Idempotence :

{
AA = A

A+ A = A

Commutativity :

{
AB = BA

A+ B = B + A

Associativity :

{
A(BC ) = (AB)C = ABC

A+ (B + C ) = (A+ B) + C = A+ B + C

Distributivity :

{
A(B + C ) = AB + AC

A+ (BC ) = (A+ B)(A+ C )

Duality :

{
if C = AB , then C = AB = A+ B

if D = A+ B , then D = A+ B = A B

Segev BenZvi (UR) PHY 403 23 / 39



Going from Boolean Premises to Statements of Plausibility

I Instead of deductive assertions like “if I is true, then A is true”, we are
interested in quantifying P(A|I ), the probability of A being true, given
that I is true.

I Comment 1: This is a conditional probability. The “|” means “given,”
so all information to the right is assumed true.

I Comment 2: There is no such thing as an absolute probability. All
probabilities are conditional at some level.

I Comment 3: Don’t expect conditional relationships to commute.

Example
Let A = “it is cloudy” and B = “it is raining.” In general,

P(A|B) 6= P(B|A).
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Requirements for Probabilistic Reasoning

What properties are required for logical and consistent reasoning?
1. Degrees of plausibility are represented by real numbers;
2. Common sense: as data supporting a hypothesis accumulate, its

plausibility increases continuously and monotonically;
3. Consistency: if there are two different ways to use the same

information, both methods should give the same conclusion.
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Probability as a Generalization of Deductive Logic

I 1933: Kolmogorov describes probability
using axiomatic set theory (see Cowan,
Ch. 1 [1]).

I 1946: Combining the desiderata of
common sense and consistency with
Boolean algebra, Cox found that real
numbers representing probabilities must
obey Kolmogorov’s axioms [10].

I “Subjective” probability is really an
extension of Aristotelian deductive logic.

I Consistency guarantees that two
observers with the same prior
information and data will assign the
same probability to an event [5].

R.T. Cox:“Employing the al-

gebra of symbolic logic it is

possible to derive the rules

of probability... which appeal

rather immediately to com-

mon sense [10].”
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Basic Rules of Probability

1. Representation: truth: P(A|I ) = 1; falsehood: P(A|I ) = 0.
2. Sum Rule: P(A|I ) + P(A|I ) = 1

Example

A = “a coin toss gives tails.” Clearly P(A|I ) + P(A|I ) = 1.

3. Product Rule: P(A,B|I ) = P(A|B, I )× P(B|I )

Example
Two red marbles and one blue marble are in a bag. Two marbles are drawn
from the bag in sequence and without replacement. What’s the probability
that both marbles are red?

P(R|I ) = 2/3
P(R,R|I ) = P(R|I )× P(R|R, I ) = 2/3× 1/2 = 1/3
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Further Properties of Probability Functions
Some additional important properties of probability functions can be
derived using Boolean algebra and repeated applications of the sum and
product rules. For example:

P(A|I ) = 1− P(A|I )
P(A+ A|I ) = 1

P(A|I ) ∈ [0, 1]
P(A+ B|I ) = P(A|I ) + P(B|I )− P(A,B|I )

Furthermore, from the product rule, A and B are called independent if
P(A|B, I ) = P(A|I ) and P(B|A, I ) = P(B|I ), so that

P(A,B|I ) = P(A|I )× P(B|I ).

Example
We draw marbles from our bag but replace them after each draw.

Segev BenZvi (UR) PHY 403 28 / 39



Bayes’ Theorem

The very important Bayes’ Theorem can also be derived directly from the
product rule:

P(A,B|I ) = P(A|B, I )× P(B|I )
P(B,A|I ) = P(B|A, I )× P(A|I )

Logically, AB = BA, so P(A,B|I ) = P(B,A|I ). Therefore

P(A|B, I ) = P(B|A, I )× P(A|I )
P(B|I )

“The probability of A given B and I is equal to the probably of B given A
times the probability of A irrespective of B , divided by the probability of B
irrespective of A.”
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Bayes’ Theorem and Inference

Replace A with hypothesis H and B with data D to see how Bayes’
Theorem applies to model selection and parameter estimation:

I A priori probability of the hypothesis (“prior”)
I “Likelihood” of data given the hypothesis

P(H|D, I ) =
P(D|H, I ) × P(H|I )

P(D|I )

I Posterior probability
I “Evidence” or “prior predictive” of the data

Using Bayes’ Theorem you can construct a probability for any hypothesis
given an observation.

Segev BenZvi (UR) PHY 403 30 / 39



The Posterior Probability

The posterior probability P(H|D, I ) gives the probability that hypothesis H
is true given the data D and background information I .

Example
You have some data (x, y) that appear to be linear. Your hypothesis H
could be “the data were generated by a function f (x) = ax+ b.”
In this case, P(H|D, I ) = P(H|(x, y), I ) gives the probability that the data
were generated by f (x).

In order to calculate P(H|D, I ), you need to quantify:

I The likelihood P(D|H, I ), which is usually quite easy.
I The prior P(H|I ), which is not always obvious.

Comment: in frequentist statistics priors are not calculated at all. Only the
likelihood is used.
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The Likelihood

P(D|H, I ): “what is the probability of observing D given H?”

Example
Using the example from the last slide, if the measurements y = {yi} are
independent and have Gaussian uncertainties of width σ, we would write

P(D|H, I ) = p(y1|H, I )× p(y2|H, I )× . . .× p(yN |H, I )

=
N∏
i=1

1√
2πσ

exp

{
−1
2

(
yi − (axi + b)

σ

)2
}
,

=

(
1

2πσ2

)N/2

exp

{
−1
2

N∑
i=1

(
yi − (axi + b)

σ

)2
}
.

Note that the likelihood does NOT give us the probability that the data are
linear; we already assumed y = ax+ b when constructing P(D|H, I ).
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The Prior

Choosing the prior P(H|I ) is tricky. It could be:
I A known relative frequency from previous observations.
I A theoretical input with some given uncertainty.
I A noninformative probability density function that indicates our total

ignorance (meaning of “noninformative” to be defined later).
I A personal opinion.

Example
Using the example from the previous two slides, P(H|I ) could be:

I Our prior belief in H that the data are linear;
I Our belief in the likely values of the model parameters a and b, with I

corresponding to previous measurements or values motivated by theory.

As a rule, we want a prior that doesn’t overly bias us against new
discoveries in the data. Doing this correctly can be non-trivial.
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Law of Total Probability
Marginalization: The Evidence Term in Bayes’ Theorem
What is the meaning of the normalization or “evidence” term P(D|I )?

I Probability of the observation D, independent of the hypothesis H.
I H doesn’t affect P(D|I ) – it is a nuisance parameter – so we

marginalize it [2]:

P(D|I ) = P(D,H|I ) + P(D,H|I )
= [P(D|H, I )× P(H|I )] + [P(D|H, I )× P(H|I )].

We express P(D|I ) in terms of the joint probability of D and the
mutually exclusive hypotheses H and H.

I Justification: logical negation, sum rule, and product rule.
I If there are M mutually exclusive (and exhaustive) hypotheses then

P(D|I ) =
M∑
i=1

P(D|Hi , I )× P(Hi |I ), with
M∑
i=1

P(Hi | . . .) = 1
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Marginalization
Discrete and Continuous Cases

Relation between joint (multidimensional) and marginal (1D) probabilities:

I Discrete Case: for exclusive, exhaustive Bi ,

P(A|I ) =
∑
i

P(A,Bi |I ) =
∑
i

P(A|Bi , I )P(Bi |I )

I Continuous case: P(A|I ) is now a probability density

P(A|I ) =
∫

P(A,B|I )dB =

∫
P(A|B, I )P(B|I )dB

Can interpret this procedure in two ways:
1. Marginalization: get P(A|I ) from joint distribution P(A,B|I ).
2. Normalization of Bayes’ Theorem: we don’t know how to calculate

P(A|I ) directly, so we expand it in a “basis” using the set of {Bi}.
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Application of Bayes’ Theorem
Example
We have 3 coins, two fair (F ) and one completely biased (B) toward tails.
We pick one coin and flip it 3 times, finding tails in all three tosses, i.e.,
D = {T,T,T}. What is the probability that we picked the biased coin?

P(B|D, I ) = P(D|B, I )P(B, I )
P(D, I )

=
P(D|B, I )P(B, I )

P(D|B, I )P(B, I ) + P(D|F , I )P(F , I )

=
13 · (1/3)

13 · (1/3) + (1/2)3 · (2/3)
=

1/3
1/3+ 1/8 · 2/3

= 4/5

Similarly, you can calculate that P(F |D, I ) = 1/5, or just infer it from the
sum rule because the fair and biased hypotheses are exclusive.
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Summary
I Sum Rule:

P(A|I ) + P(A|I ) = 1∑
P(Hi |I ) = 1 for exclusive Hi

I Product Rule:
P(A,B|I ) = P(A|B, I )P(B|I )

I Bayes’ Theorem:

P(A|B, I ) = P(B|A, I )P(A|I )
P(B|I )

I Law of Total Probability:

P(A|I ) =
∑
i

P(A,Bi |I ) =
∑
i

P(A|Bi , I )P(Bi |I )
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Further Reading I

[1] Glen Cowan. Statistical Data Analysis. New York: Oxford University
Press, 1998.

[2] D.S. Sivia and John Skilling. Data Analysis: A Bayesian Tutorial.
New York: Oxford University Press, 1998.

[3] R.J. Barlow. Statistics: A Guide to the Use of Statistical Methods in
the Physical Sciences. New York: Wiley, 1989.

[4] Louis. Lyons. Statistics for Nuclear and Particle Physicists. New
York: Cambridge University Press, 1986.

[5] E.T. Jaynes. Probability Theory: The Logic of Science. New York:
Cambridge University Press, 2003.

[6] W. Press et al. Numerical Recipes in C. New York: Cambridge
University Press, 1992. URL: http://www.nr.com.
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Further Reading II
[7] B.A. Benson et al. “Cosmological Constraints from

Sunyaev-Zel’dovich-Selected Clusters with X-ray Observations in the
First 178 Square Degrees of the South Pole Telescope Survey”. In:
Astrophys.J. 763 (2013), p. 147. arXiv: 1112.5435 [astro-ph.CO].

[8] Karl Popper. The Logic of Scientific Discovery. New York:
Hutchinson and Co., 1959.

[9] John Venn. The Logic of Chance. New York: Macmillan, 1888. URL:
https://archive.org/details/logicofchance029416mbp.

[10] R.T. Cox. “Probability, Frequency, and Reasonable Expectation”. In:
Am. J. Phys. 14 (1946), p. 1.
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