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Last Time
Basics of Probabilistic Reasoning

I Degrees of plausibility are
represented by real numbers.

I As data supporting a hypothesis
accumulate, its plausibility
increases continuously and
monotonically.

I If there are two different ways to
use the same information, both
methods should give the same
conclusion.

I All probability is conditional on
some assumption.
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Last Time
Introduction to Probability

I Sum Rule

P(A|I ) + P(A|I ) = 1∑
P(Hi |I ) = 1 for exclusive Hi

I Product Rule (Joint Probability)

P(A,B|I ) = P(A|B, I )P(B|I )

I Bayes’ Theorem

P(A|B, I ) =
P(B|A, I )P(A|I )

P(B|I )
I Law of Total Probability

P(A|I ) =
∑
i

P(A,Bi |I ) =
∑
i

P(A|Bi , I )P(Bi |I )
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Marginalization
Discrete “Events”

Given a set of mutually exclusive possibilities Yk , we can estimate the
probablity of some event X as

P(X |I ) =
∑
k

P(X ,Yk |I ), where
∑
k

P(Yk |X , I ) = 1

Example
Suppose there are 5 presidential candidates in an election, which we
represent by Yk with k = 1, . . . , 5. Then the probability that the
unemployment rate will go down next year (X ) irrespective of who wins the
election is given by

P(X |I ) =
5∑

k=1

P(X ,Yk |I )
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Marginalization
Continuum Limit

Suppose we don’t have a set of discrete events or hypotheses to test, but
an arbitrarily large set of propositions in a range of values? In this case, we
go to the M →∞ limit:

P(X |I ) =

∫ ∞
−∞

p(X ,Y |I )dY , where

p(X ,Y |I ) = lim
δy→0

P(X , y ≤ Y < y + δy |I )
δy

is called the probability density function (PDF) of X and Y ∈ [y , y + δy ].

Example
We want to calculate the mass of a particle like the Higgs. We consider a
parameter space where mH may take on any continuous value inside a
physically motivated range.
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The Probability Density Function

I The PDF is a probability per unit volume (hence density).
I The quantity we want is a probability. To get it we calculate volume

integrals of the PDF.
I Obviously, it doesn’t have to be a joint distribution. The 1D case:

P(a ≤ X < b|I ) =

∫ b

a
p(x |I )dx

I The PDF must be normalized since the values of x are mutually
exclusive: ∫ ∞

−∞
p(x |I )dx = 1

I The PDF contains all the information we need to make probabilistic
inferences about a parameter, event, or a hypothesis. Its maximum
gives the most probable value of a parameter.
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Comment: Marginalization vs. Projection
Marginalization eliminates an unwanted parameter from a joint PDF:

p(x |I ) =

∫
p(x , y |I ) dy (marginal PDF)

This is not the same as projection, in which you calculate the PDF of x for
some fixed y (see [1]), giving you a conditional PDF:

p(x |y , I ) =
p(x , y |I )∫
p(x , y |I ) dx

=
p(y |x , I )p(x |I )

p(y |I )
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Summary Statistics

Often we don’t have access to the
full PDF. Or we do, but we wish to
summarize it in just a few numbers:

I Mean: “location”
I Variance: “width” or “spread”
I Mode: most probable value
I Median: central value
I Percentiles: rank/scoring
I Skew: asymmetry of PDF
I Kurtosis: “peakedness”

Can you think of a case where these
might not be sufficient?
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Expectation Value
The Mean of a Distribution

I In terms of a PDF the expectation value or mean of a distribution is
given by

µ = 〈x〉 =

∫
x p(x |I )dx

I Other notations: E (x) and x̄ . Read the latter as “x-bar” instead of
“not-x .” It isn’t logical negation.

I Typical usage: µ, 〈x〉, and E (x) refer to the expectation value of a
PDF, while x̄ refers to the mean of a set of measurements {xi}:

x̄ =
1
N

N∑
i−1

xi

I Weighted mean: if not all data should contribute equally to the sum,

x̄ =

∑N
i−1 wixi∑N
i−1 wi
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Special Case
Cauchy/Lorentzian/Breit-Wigner Distribution

I The Cauchy distribution is
defined by the PDF

p(x |x0, Γ) =
1
2π

Γ

(x − x0)2 + (Γ/2)2

I If you try to calculate

〈x〉 =

∫ ∞
−∞

x p(x |x0, γ) dx

you will find that it diverges!
I This function describes spectral

lines and resonances, so we do
come across it.
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Variance
The Width of a Distribution

I In terms of a PDF the variance of a distribution is

σ2
x = V (x) = 〈(x − µ)2〉 =

∫
(x − µ)2 p(x |I )dx

I Note how variance is defined in terms of the mean µ; it measures the
spread of squared deviations of x about µ. This is more obvious if you
remember the definition of variance for a data set {xi}:

V̂(x) =
1
N

N∑
i=1

(xi − µ)2

I The square root of the variance, called the standard deviation or RMS
error σx , is a measure of the width of the PDF in the same units as x .
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Calculating Variance
Known and Unknown Mean

I Note that the calculation of the variance of a data set will differ if the
mean is known vs. calculated from the data.

Known Mean

V̂(x) =
1
N

N∑
i=1

(xi − µ)2

Unknown Mean

V̂(x) =
1

N − 1

N∑
i=1

(xi − x̄)2

I If we compute x̄ from the data but use the formula on the left, our
estimate of the variance of the PDF will be too small (biased).

I Underestimating V (x), in this or any other way, can result in serious
mistakes. For example, for small N you could underestimate the
probability of observing a particular xi .
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Calculating Variance
“Online” Formula

I Suppose you have a detector that is measuring events xi in real time.
How do you calculate V (x) as the data are recorded?

I If you use the formula

V̂(x) =
1

N − 1

N∑
i=1

(xi − x̄)2

then you need to estimate x̄ and then recalculate all of the deviations
from x̄ , requiring a second pass through the data. Inefficient!

I But, if you realize that

V (x) = 〈(x − µ)2〉 = 〈x2〉 − 〈x〉2 = x2 − x̄2

then you can write an algorithm that computes both the mean and
variance on the fly. You will do this in your next problem set.
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Covariance
I The covariance of two quantities x and y is given by

σ2
xy = cov (x , y) = 〈(x − µx)(y − µy )〉

=

∫∫
(x − µx)(y − µy ) p(x , y |I ) dx dy

I As with variance, there is a nice simplification of covariance that
makes calculations easy:

cov (x , y) = 〈xy〉 − 〈x〉〈y〉

Clearly, σ2
xx = cov (x , x) = V (x) = σ2

x .
I Often (but not so much in physics) people use a dimensionless version

of covariance called the correlation coefficient,

ρ =
cov (x , y)√
V (x)V (y)

=
σ2
xy

σxσy
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Covariance
Independent x and y

Example
If x and y are independent, what is their covariance?

cov (x , y) = 〈xy〉 − 〈x〉〈y〉, but

〈xy〉 =

∫∫
xy p(x , y |I ) dx dy

=

∫∫
xy p(x |I )p(y |I ) dx dy

=

∫
x p(x |I ) dx

∫
y p(y |I ) dy

= 〈x〉〈y〉

So clearly cov (x , y) = 0 if x and y are independent.
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Examples of Covariance and Correlation

I Correlations work as you expect;
they can be positive, negative,
or zero.

I Note: x , y independent will have
cov (x , y) = 0.

I Note: cov (x , y) = 0 does not
imply that x , y are independent.

I Get comfortable with the
concept of covariance. It is
central to fitting and parameter
estimation.
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Higher-Order Summary Statistics

I The mean (“central value”) is the first moment of a PDF and the
variance (“spread”) is the second moment.

I The third moment (“asymmetry”) is called the skew, and it is defined
as

skew (x) = γx =

∫
(x − µx)3 p(x |I ) dx

=
1

Nσ3
x

N∑
i=1

(xi − x̄)3

I The fourth moment is called the kurtosis.
I You could keep going like this, but eventually it becomes easier to just

characterize your distribution with the full PDF or at least a
compressed representation like a histogram.

Segev BenZvi (UR) PHY 403 19 / 35



The Median

I The median is defined as the value in a PDF or a data set where 50%
of the data are expected to be above or below the value.

I For an ordered data set xi of length N,

median (x) = x0.5 =

{
x(N+1)/2 N is odd
(xN/2 + xN/2+1)/2 N is even

I For a PDF of x , the median is given by the value x0.5 which satisfies
the condition

P(x ≤ x0.5|I ) =

∫ x0.5

−∞
p(x |I ) dx = 0.5

I This is literally the definition above expressed in terms of the
cumulative distribution P(x ≤ x0.5|I ).
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The Cumulative Distribution Function

I The cumulative distribution function, or CDF, of x is the probability of
observing a value at or below some x . It is the integral of the PDF.

I For a normalized one-dimensional PDF, the CDF will go to zero as
x → −∞ and one as x → +∞.
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In-Class Exercise
The Discrete CDF

Example
You flip a fair coin twice and let X be the number of heads. What are the
possible outcomes and their probabilities? What is the CDF?

P(X = 0|I ) = 1/4, P(X = 1|I ) = 1/2, P(X = 2|I ) = 1/2

FX (x) =


0, x < 0
1/4, 0 ≤ x < 1
3/4, 1 ≤ x < 2
1 x ≥ 2
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Rank Statistics
Quantiles and Data Scoring

I Let’s extend the definition of the median. We define the quantile xα
as the value which satisfies the definition

P(x ≤ xα|I ) =

∫ xα

−∞
p(x |I ) dx = α

Example
The 25th percentile of a distribution x0.25 satisfies

P(x ≤ x0.25|I ) =

∫ x0.25

−∞
p(x |I ) dx = 0.25

I Quantiles are tail statistics; they tell us how probable it is to find x in
one of the tails of the PDF p(x |I ). These are used all the time for
scoring.
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Why Use the Median?

I Aside from scoring data like exams, when is the median ever useful?
I It is a measure of centrality that is less sensitive to the tails of of a

PDF than other measures like the mean.

Example
Let {xi} = 1, 2, 1, 1, 1, 2, 3, 1, 1000. The mean and median are given by

x̄ ≈ 112.4
median (x) = 1

I The mean in the example is sensitive to an outlier far from the main
cluster of values, while the median is not. It is said to be “robust”
against outliers.

I Question: how should we define an outlier?
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Aside: Outliers in Physics

I You’re doing a measurement. Given an accepted model of the data –
the so-called null hypothesis – you observe something very unlikely.

I Is this a good thing or a bad thing? Could be either.
I “Bad:” the null hypothesis is correct, and you don’t understand

something in your data. Maybe there is an unknown systematic effect
or poor calibration in your instruments.

I “Good:” you did everything right, and the null hypothesis does not
describe the data well. Congratulations, you made a discovery!

Example
In 2011, the OPERA Collaboration measured the time of flight of a νµ
beam from CERN and found (vν − c)/c = (2.48± 0.28± 0.30)× 10−5 [2].
Given the null hypothesis (vν − c)/c ≤ 0, this was a significant outlier.
Not the good kind [3].

Segev BenZvi (UR) PHY 403 25 / 35



Aside: Decision Making in Physics
The 68-95-99 Rule
In physics we tend to express rare events in terms of the tails of the
Gaussian PDF

p(x |I ) =
1√
2πσ

exp

{
−1
2

(
x − µ
σ

)2
}

The “68-95-99” quantile rule:
I 68.27% of the data are within

1σ of the mean.
I 95.45% of the data are within

2σ of the mean.
I 99.73% of the data are within

3σ of the mean.

Segev BenZvi (UR) PHY 403 26 / 35



Aside: Decision Making in Physics
The 5σ Rule

The “sigma” nomenclature is a nice shorthand for quantiles. For example,
“3σ” is physicist-speak for something outside the central 99% of a
distribution (or upper/lower 99th percentile). So even when your PDF isn’t
Gaussian, everyone knows that “3σ” means the 99.7th percentile.

Example
The 5σ Rule: the gold standard for a discovery in HEP is a 5σ deviation
of data from the null hypothesis. For an upper-tail test, this corresponds to

P(x ≤ µ+ 5σ|I ) =

∫ µ+5σ

−∞

1√
2πσ

exp

{
−1
2

(
x − µ
σ

)2
}

≈ 3 · 10−7

Why so strict? Why not use 1%, like in medical trials? We’ll come back to
this later in the course. You may find the answer... disturbing.
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The Mode

I The most probable value in a distribution (or most common value in a
data set), called the mode, is given by the maximum of the PDF.

I The mode is a location parameter like the mean. Unlike the mean, it
does not account for the skewness of the PDF, so the mean may
perform better for asymmetric distributions.

I However, when we do parameter estimation, we are most interested in
the maximum (the mode) of the PDF and the shape of the
distribution around the maximum.

I All the information you need for parameter estimation is in the PDF.
Summary statistics are nice, but they can mislead you.
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Breakdown of Summary Statistics
Multimodal Distributions

Where would the mean be in this distribution? What is the variance?

Would any or all of the moments of the PDF that we defined today be
sufficient to describe this?
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Binning of Data
Data Compression with Histograms

I Often you will want to bin your data, or you will be given binned data.
I A histogram is a division of N data points into m subintervals or bins

of width ∆xi . A value x is sorted into bin i if x ∈ [xi , xi + ∆xi ].

I Normalization: N =
∑

i ni ·∆xi , with ni the count in bin i .
I Note: data can also be weighted when filling the histogram.
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Data Compression with Histograms

I Histograms are a great way to summarize a large data set, but never
forget that they are a compression technique. When you bin data you
are throwing away information.

I Ideally: bin edges are chosen such that the PDF changes very little
across the width of the bin.

I Typically the bin widths are set to the same value ∆x , but it’s better
to have equal counts per bin.
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Automatic Binning Schemes

I There is a large literature on optimally binning a given data set. One
scheme now common in astronomy is called Bayesian Blocks [4].

I Idea: iteratively sort through the data for “changepoints” that indicate
whether or not a bin should be split.

I You can be more or less aggressive about splitting bins by tuning the
false positive rate p0 of accidentally splitting a bin.
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Some Warnings About Binning

I You have seen that with a poor choice of binning you can effectively
wipe out features in your data.

I You can bin more finely, though eventually you’ll reach a point where
every bin contains only 0 or 1 counts. So much for compression.

I Another issue: because you’re binning some random x , the counts in
each bin are themselves random numbers with some uncertainty.

I Most binned statistics, like the χ2 test we’ll talk about later in the
course, assume the uncertainty on the counts in each bin is Gaussian.

I However, if the counts in a bin are low (< 10) then the distribution
will actually be Poisson, violating the conditions of your χ2 test.

I Possible consequence: you misinterpret your χ2 statistic and publish a
false discovery.
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Summary

I The probability density function (PDF) is the probability per unit
volume of one or more parameters in a parameter space.

I The PDF contains all the information you need to know about a
parameter.

I Most often we are interested in the most probably location of a
parameter and its distribution about this point.

I There are various summary statistics we can use to capture the
essence of a distribution but there are pathological cases which you
encounter frequently in research.

I Binning data is an effective way of summarizing it in m values
(counts). Due to the freedom you have in choosing bins, you have to
be careful not to throw away too much information.
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