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Last Time

» Probability density functions
» Summary Statistics:

» Location parameters: mean, median, mode
Width parameters: variance, covariance
Higher-order moments: skew, kurtosis
Ordered rank statistics: percentiles

The cumulative distribution function
Histograms
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Last Time
The 68-95-99 Rule

In physics we tend to express rare events in terms of the tails of the
Gaussian PDF

Normal Distribution

040} 1 The “68-95-99" quantile rule:
2:2 7 > 68.27% of the data are within
_ 025 1o of the mean.
= 0201 » 05.45% of the data are within
015 20 of the mean.
2.,(1)(;: » 99.73% of the data are within
0.00 30 of the mean.
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Binomial Distribution

» Bernoulli trials — i.e, binary measurements which result in “success”
with probability p and “failure” with probability 1 — p — are described
by the binomial distribution.

» In n trials, like a coin toss, the probability of m “heads” is

pm(]. - p)n—m

» If we don't care about the order of the successes, then there are ,Cp,

ways to get m successes in m trials. Therefore,

p(min, p) = m!(nnim)!p’"(l —p)" "
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Binomial Distribution

The binomial PDF is a discrete distribution:
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Note how the binomial looks increasingly Gaussian as n — large.
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Binomial Distribution

Mean

The mean of the binomial distribution is

(m) = Z m- m!(nn—im)!li’m(l -p)" "

m=0

—npz nT(; Tl a-p)

—npz " (1 p)"

= np

where we simply used the fact that p(m|n, p) is normalized over the sum
from m =0 to n.
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Binomial Distribution

Variance
To find the variance V (m), note that

(m(m—1)) = > m(m—1)-

m=0

m!(n— m)!pm(1 —pmT

/
n /I

2 n' m n—m'
=n(n—1)p Z mp (1-p)

m'=

(m? = m) = n(n — 1)p?

where m = m—2, n’ = n— 2, and the sum is 1. Therefore,

V(m) = (m*) — (m)*> = (m* — m) + (m) — (m)?
= n(n—1)p* + np — (np)?
= np(1 - p)
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Binomial Distribution

Detector Efficiencies

Example

You measure the tracks of cosmic ray particles using a stack of silicon
detectors which are 95% efficient. You decide that 3 points are needed to
define a track. How efficient is a stack of 3 layers? What about 4, or 57

P(3|p = 0.95,n = 3) = 0.95% = 0.857
41 . 4
= ~—-0.95%0.05 + 0.95* = 0.986
31!
P(3+4+5|p=0.95n=5)=P(3]...)+ P(4]...)+ P(5]...)
_ 5 3. o A4l . A
= 3570:95°0.05% + 27-70.95%0.05 + 0.95
= 0.999
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Multinomial Distribution

Generalization of the Binomial Distribution

» If instead of two outcomes we have k, we can generalize the binomial
distribution to the multinomial distribution:

p(my, ma, ..., mkln, p1,p2,...,pk) = I m,',Hlp

where

» The multinomial is a joint probability distribution over the {m;}.

Example

Example: binned data. If you sample trials from a PDF and bin the results,
the predicted counts in each bin will follow a multinomial distribution.
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Poisson Distribution

» The Poisson distribution is a limiting case of the binomial distribution
(n— o0, p— 0, (m) — finite).
» It applies when we observe particular outcomes but without knowledge
of the number of trials. For example:
» Number of lightning strikes in a thunderstorm
» Number of supernova explosions in the Galaxy per century
» Suppose that on average A events are expected to occur in some
interval of length T. l.e., the events occur at constant rate R such
that A = RT.

» If we split the interval up into n sections so that in each section we
observe 0 or 1 events, the probability of observing an event in a
section is p = A/n, and the total number of events in the interval
follows a binomial distribution:

n!

p(mlp=X/n,n) = pT(L—p)" "

m!(n — m)!
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Poisson Distribution
Letting n — oo we find that

i n! AN\ 1 AN\
oo =) = fin o (5)(13)
The factorials reduct to a power of n in the large n limit:

lim o lim n(n—1)(n—2)...(n—m+1) - n™

n—oo (n — m)! n—oo

And we use the definition of the exponential:

lim <1—3) — <1—3) e
n—o00 n n

Combining the terms, we get the Poisson distribution:

e~ A\™

p(m|A) = —
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Poisson Distribution

The Poisson PDF is also discrete distribution:
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Note how the Poisson distribution looks increasingly Gaussian as A — large.
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Poisson Distribution

Mean

The mean of the Poisson distribution is

= Ame?
<m>:z:0m m!
e )\m—l
oy
Ae mz::l(m—l)l
o /\m'
-X m'A “A A
= Z oy =)Xe e
=

where we used the fact that the sum is the expansion of e*.
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Poisson Distribution
Variance
To find the variance V (m), we start with

)\me—k
(m(m—1)) = 3" m(m—1)- ¢

As with the binomial distribution, drop the first two terms and set
m = m— 2 to get

(m*> —m) = AZ_’\Zm/I—

Therefore, the variance is

V(m) = (m?) = (m)* = (m?* — m) + (m) — (m)?
=A24 0\
=\
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Poisson Distribution
HEP Example

Example
Suppose you try to measure a cross-section o for a process.
» You observe n events for an integrated luminosity of L.
» For this luminosity, the expected number of events is v = o L.

» The observed number of events will be Poisson-distributed according
to v.

Our best estimate of v is the number of observed events: © = n. For a
Poisson distribution, the variance is equal to the mean, so uncertainty on
our estimate is given by

p=ntVi =  G=0/L=(nEt V)L

Note: /n is the estimated uncertainty of the underlying Poisson mean,
not the uncertainty on n. There is no “error” on n, unless you miscounted!
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Poisson Distribution

Neutrino Counts in Short Time Intervals

Example

From Barlow [1]: the number of neutrinos detected in 10-second intervals
by the IMB detector on 23 February 1987 was:

No. events 0 1 2 3 4 5167|809
No. intervals | 1042 | 860 | 307 | 78 | 15 |3 |0 |0 | 0 | 1

The prediction comes from a Poisson distribution with A obtained by
calculating the weighted average

8 8
A 0-1042+1-860+ ...
H— )= iCj = =0.77
" Z,._OWC/ZI_:OW 1042 1860 ... °

Given this mean, the expected Poisson counts are given by

| Prediction [ 1064 | 823 | 318 [ 82 [ 16 [ 2 | 0.3 [ 0.03 | 0.003 | 0.0003 |
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Combining Poisson Variables

Sum

The sum of two independent Poisson-distributed variables x and y is itself
a Poisson variable z. To see this, first consider the joint probability of x
and y:

e MAL e MA, e (N EA) N
POy A) = PPN ) = == = =

Now, to find p(z|A;), sum p(x,y) over all (x,y) satisfying x + y = z:

Z o= (AxtAy) \x )\ z—x
€ X
plzlrz) =) .

= x!(z — x)!
e A S I
a ! I(z — x)!

z! XZOX.(Z x)!
e_(>‘x+)‘y)

- 21 — (A« +Ay)*, by the binomial theorem
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Combining Other Variables

Rules of the road:

» The sum of two Poisson variables is also a Poisson variable, even if the
means are different.

» The sum of two Gaussian variables is a Gaussian, even if the means
and variances are different.

This is not true for the binomial distribution. In this case:
mean = npy + Np», variance = np1(1 — p1) + Np2(1 — p2)
This does not have the general form of the binomial distribution unless

p1 = po. Also note:

» The difference of two Poissons is not Poisson; it follows a Skellam
distribution.

» Beware of other false assumptions. E.g., the ratio of two Gaussians is
not another Gaussian!
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Gaussian Distribution

» You are already familiar with the Gaussian PDF:

» The Gaussian is the limiting case of the Poisson distribution (A — o0)
and the binomial distribution (n — 00).
» Rules of thumb:
» Poisson is a good approximation of binomial if n > 20 and p < 0.05.
» Gaussian is a good approximation of Poisson if A > 20.
» Gaussian is a good approximation of binomial if np(1 — p) > 9.
» So basically the Gaussian is usually “safe” for large numbers, but
beware of using it in the wrong situation.
» The Gaussian has smaller tails than many other distributions and

misusing it can cause you to overestimate the significance of rare
events.
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Central Limit Theorem

» Why is the Gaussian so important? Because of the Central Limit

Theorem.

» Theorem: the sum of n independent continous random variables x;
with means 1; and variances o2 becomes a Gaussian with mean and
variance . )

p=> pi o*=> o}
i=1 i=1
in the limit n — oc.

» See Cowan [2] for a proof based on characteristic functions

» Generally, this is true independent of the individual forms of the PDFs
of the x; (see next slide).

» Since it is common for many measurements to add together in

experiment, the Central Limit Theorem justifies the use of the
Gaussian in many cases.
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Central Limit Theorem

Generator: Normal Generator: Uniform Generator: Exponential

248

A
A
I\

n=2 n=2
n=>5 n=>5
n=30 n =30
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Multidimensional Gaussian
» The k-dimensional generalization of the Gaussian is

SRR )

1
p(x|p, %) = ———==-exp <
(%) V(2m)k|%| 2
> In this expression, x = (x1,x2,...,Xk) is a vector with mean

M= (M17M27’ . -aMk)-
» 3 is the covariance matrix of the Gaussian. Its diagonal elements are
the variances of the x;, and its off-diagonal elements are the

covariances cov (Xj, X;).

Example
Binormal distribution: for k = 2, 3 is a 2 x 2 real symmetric matrix:

=) =) ==(% %)
y Ly Oxy 0y
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Change of Variables

v

The covariance matrix fully

specifies any correlations or
anti-correlations between the
elements of x. =0

If all of the elements of x are

v

-3

independent, then the ) e
covariance matrix is diagonal.

x

0, =20,=1,p=—05

-3 -2 -1 0
T

1

0,=03,0,=1,p=-08

2

v

If correlations exist, then there is
a unitary matrix U that we can
identify to diagonalize X. l.e.,

> =UxU'.

v

It is often convenient to change
variables to 3.
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Uniform Distribution

» The uniform (a.k.a. the “top hat" distribution) has a probability which
is constant inside some range [a, b] and zero outside:

v

Mean: (x) = (a+ b)/2
Variance: V (x) = (b — a)?/12
Standard deviation: o, = (b — a)/V/12

The uniform distribution is important for two reasons:

1. It is the basis for a large number of pseudorandom number generators.

2. Its constant probability indicates no preferred values inside the range
[a, b], making it a popular “objective” prior probability density in
Bayesian calculations.

v

\4

v
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x? Distribution
» The 2 distribution of the continuous variable z is

1 n/2—1_-—z/2
P(Z|”):W /27lemel2,

where I is the gamma function:

o0
I'(x):/ et Ldr
0

v

Note: I'(x 4+ 1) = x[(x), and ['1/2 = \/=. For integer x,
M(x+1)=x!.
Mean: E(x) =n

Variance: V (x) = 2n

v

\4

v

The simple variance and mean of the x? distribution make its tail
probabilities easy to estimate.
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x? Distribution

» For n independent Gaussian x;
with means p; and variances o*,-z, 0.5

the quantity — n=l
— n=2
04
n 2 — n=4
o (6 )
L=y i m) B
; o
i=1 ! >03
follows a x? with n degrees of E
=]
freedom. £ 0.2
» Notice that z looks like a
least-squares estimator for a fit. 0.1
» Physicists often use the tail
robability of x? as a measure of
P Vo X 0-05 5 10 15 20
goodness of fit. )
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Using the x? Distribution

Example
You are shown a fit and told that x? is 70 for 50 degrees of freedom. Is the

fit any good? In other words, how likely is it that 2 could be this large by
chance?

Roughly: we expect the mean to be n = 50, and the variance is 2n = 100
with RMS 1/100 = 10. So this is a 20 effect, which happens ~ 2.5% of the
time if we approximate using the Gaussian definition of o.

v

» If 2 >> n, then either your model is not a good fit to the data or you
badly understimated your uncertainties o;.

» If x? < n, you should also be suspicious. You might have
overestimated your uncertainties.
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A Warning about Using the x? Distribution

» Recall the warning given at the end of the last class: the y? statistic z
is only asymptotically distributed like a x? distribution if the
uncertainties on each x; are Gaussian.

» Where this can hurt you: fitting binned data.

0.40 600
0.35 500
0.30

= 0.25 400

= =

=020 £ 300

& 8

2015 200
0.10
0.05 100
0.00——7 =2 0 2 1 00— -2 0 2 1

» Remember that if your histogram bins are relatively full the
uncertainties on the counts in each bin will be Gaussian

» But if the bins are empty or close to empty, the uncertainties in the
counts will be Poisson, and z will not follow the x? distribution!
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Exponential Distribution

» The exponential PDF is

1
pixIN) = ye A x20

» Mean: E(x) = A\
» Variance: V (x) = A2, RMS: \
» Lack of memory:
p(t — to|t > to, A) = p(t|N).
» Decay time of unstable particle
with lifetime A — 7

Lifetime of electrical
components, such as lightbulbs

v
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Power Law (Pareto) Distribution

» Power law:
Sclentific American, {c) 1998
1PARTICLE

PER SQUARE
METER PER SECOND

p(xla) =

» The power law shows up all over
physics, and is characteristic of
scale invariance, hierarchy, or
stochastic generating processes.

1 PARTICLE
PER SQUARE
¢, METER PER YEAR

N
\NEE

» Examples: populations of cities,

RELATIVE PARTICLE FLLI (LOGARITHWIC LIMITS)

; ; L 1PARTICLE

sizes of lunar impact craters, T bR SQUARE _

energies of cosmic rays, sizes of - KILOMETER 2

) i C PERYEAR £

interstellar dust particles, = ]

magnitudes of earthquakes, ... o . |8
- . =
T T R B T M B

1010 1012 1014 qpl8 018 1920
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Further Reading |

[1] R.J. Barlow. Statistics: A Guide to the Use of Statistical Methods in
the Physical Sciences. New York: Wiley, 1989.

[2] Glen Cowan. Statistical Data Analysis. New York: Oxford University
Press, 1998.

Segev BenZvi (UR) 33 /33



	Review of Last Class
	Probability Density Functions

	Probability Distributions
	Binomial Distribution
	Poisson Distribution
	Gaussian Distribution
	Uniform Distribution
	2 Distribution
	Other Distributions


