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Last Time

I Probability density functions
I Summary Statistics:

I Location parameters: mean, median, mode
I Width parameters: variance, covariance
I Higher-order moments: skew, kurtosis
I Ordered rank statistics: percentiles
I The cumulative distribution function
I Histograms
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Last Time
The 68-95-99 Rule
In physics we tend to express rare events in terms of the tails of the
Gaussian PDF

p(x |I ) = 1p
2⇡�

exp

(
�1

2

✓
x � µ

�

◆2
)

The “68-95-99” quantile rule:
I 68.27% of the data are within

1� of the mean.
I 95.45% of the data are within

2� of the mean.
I 99.73% of the data are within

3� of the mean.
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Binomial Distribution

I Bernoulli trials — i.e, binary measurements which result in “success”
with probability p and “failure” with probability 1 � p — are described
by the binomial distribution.

I In n trials, like a coin toss, the probability of m “heads” is

p

m(1 � p)n�m

I If we don’t care about the order of the successes, then there are
n

C

m

ways to get m successes in m trials. Therefore,

p(m|n, p) = n!

m!(n �m)!
p

m(1 � p)n�m
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Binomial Distribution
The binomial PDF is a discrete distribution:

Note how the binomial looks increasingly Gaussian as n ! large.
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Binomial Distribution
Mean

The mean of the binomial distribution is

hmi =
nX

m=0

m · n!

m!(n �m)!
p

m(1 � p)n�m

= np

nX

m=1

(n � 1)!
(m � 1)!(n �m)!

p

m�1(1 � p)n�m

= np

n

0X

m

0=0

n

0!

m

0!(n0 �m

0)!
p

m

0
(1 � p)n

0�m

0

= np

where we simply used the fact that p(m|n, p) is normalized over the sum
from m = 0 to n.
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Binomial Distribution
Variance

To find the variance V (m), note that

hm(m � 1)i =
nX

m=0

m(m � 1) · n!

m!(n �m)!
p

m(1 � p)n�m

= n(n � 1)p2
n

0X

m

0=0

n

0!

m

0!(n0 �m

0)!
p

m

0
(1 � p)n

0�m

0

hm2 �mi = n(n � 1)p2

where m

0 = m � 2, n0 = n � 2, and the sum is 1. Therefore,

V (m) = hm2i � hmi2 = hm2 �mi+ hmi � hmi2

= n(n � 1)p2 + np � (np)2

= np(1 � p)
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Binomial Distribution
Detector Efficiencies

Example

You measure the tracks of cosmic ray particles using a stack of silicon
detectors which are 95% efficient. You decide that 3 points are needed to
define a track. How efficient is a stack of 3 layers? What about 4, or 5?

P(3|p = 0.95, n = 3) = 0.953 = 0.857
P(3 + 4|p = 0.95, n = 4) = P(3| . . .) + P(4| . . .)

=
4!

3!1!
0.9530.05 + 0.954 = 0.986

P(3 + 4 + 5|p = 0.95, n = 5) = P(3| . . .) + P(4| . . .) + P(5| . . .)

=
5!

3!2!
0.9530.052 +

4!
3!1!

0.9530.05 + 0.954

= 0.999
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Multinomial Distribution
Generalization of the Binomial Distribution

I If instead of two outcomes we have k , we can generalize the binomial
distribution to the multinomial distribution:

p(m1,m2, . . . ,m
k

|n, p1, p2, . . . , p
k

) =
n!Q
i

m

i

!

kY

i=1

p

m

i

i

where
kX

i=1

p

i

= 1,
kX

i=1

m

i

= n

I The multinomial is a joint probability distribution over the {m
i

}.

Example

Example: binned data. If you sample trials from a PDF and bin the results,
the predicted counts in each bin will follow a multinomial distribution.
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Poisson Distribution
I The Poisson distribution is a limiting case of the binomial distribution

(n ! 1, p ! 0, hmi ! finite).
I It applies when we observe particular outcomes but without knowledge

of the number of trials. For example:
I Number of lightning strikes in a thunderstorm
I Number of supernova explosions in the Galaxy per century

I Suppose that on average � events are expected to occur in some
interval of length T . I.e., the events occur at constant rate R such
that � = RT .

I If we split the interval up into n sections so that in each section we
observe 0 or 1 events, the probability of observing an event in a
section is p = �/n, and the total number of events in the interval
follows a binomial distribution:

p(m|p = �/n, n) =
n!

m!(n �m)!
p

m(1 � p)n�m
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Poisson Distribution
Letting n ! 1 we find that

p(m|p = �/n, n) = lim
n!1

n!

m!(n �m)!

✓
�

n

◆
m

✓
1 � �

n

◆
n�m

The factorials reduct to a power of n in the large n limit:

lim
n!1

n!

(n �m)!
= lim

n!1
n(n � 1)(n � 2) . . . (n �m + 1) ! n

m

And we use the definition of the exponential:

lim
n!1

✓
1 � �

n

◆
n�m

!
✓

1 � �

n

◆
n

! e

��

Combining the terms, we get the Poisson distribution:

p(m|�) = e

���m

m!
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Poisson Distribution
The Poisson PDF is also discrete distribution:

Note how the Poisson distribution looks increasingly Gaussian as � ! large.
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Poisson Distribution
Mean

The mean of the Poisson distribution is

hmi =
1X

m=0

m

�m

e

��

m!

= �e��
1X

m=1

�m�1

(m � 1)!

= �e��
1X

m

0=0

m

0�m

0

m

0!
= �e��

e

�

= �

where we used the fact that the sum is the expansion of e�.
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Poisson Distribution
Variance
To find the variance V (m), we start with

hm(m � 1)i =
1X

m=0

m(m � 1) · �
m

e

��

m!

As with the binomial distribution, drop the first two terms and set
m

0 = m � 2 to get

hm2 �mi = �2
e

��
1X

m

0=0

�m

0

m

0!
= �2

Therefore, the variance is

V (m) = hm2i � hmi2 = hm2 �mi+ hmi � hmi2

= �2 + �� �2

= �
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Poisson Distribution
HEP Example

Example

Suppose you try to measure a cross-section � for a process.
I You observe n events for an integrated luminosity of L.
I For this luminosity, the expected number of events is ⌫ = �L.
I The observed number of events will be Poisson-distributed according

to ⌫.
Our best estimate of ⌫ is the number of observed events: ⌫̂ = n. For a
Poisson distribution, the variance is equal to the mean, so uncertainty on
our estimate is given by

⌫̂ = n ±
p
n =) �̂ = ⌫̂/L = (n ±

p
n)/L

Note:
p
n is the estimated uncertainty of the underlying Poisson mean,

not the uncertainty on n. There is no “error” on n, unless you miscounted!
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Poisson Distribution
Neutrino Counts in Short Time Intervals

Example

From Barlow [1]: the number of neutrinos detected in 10-second intervals
by the IMB detector on 23 February 1987 was:

No. events 0 1 2 3 4 5 6 7 8 9
No. intervals 1042 860 307 78 15 3 0 0 0 1

The prediction comes from a Poisson distribution with � obtained by
calculating the weighted average

m̄ = �̂ =
8X

i=0

w

i

c

i

/
8X

i=0

w

i

=
0 · 1042 + 1 · 860 + . . .

1042 + 860 + . . .
= 0.77

Given this mean, the expected Poisson counts are given by

Prediction 1064 823 318 82 16 2 0.3 0.03 0.003 0.0003
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Combining Poisson Variables
Sum
The sum of two independent Poisson-distributed variables x and y is itself
a Poisson variable z . To see this, first consider the joint probability of x
and y :

p(x , y |�
x

,�
y

) = p(x |�
x

)p(y |�
y

) =
e

��
x�x

x

x!

e

��
y�y

y

y !
=

e

�(�
x

+�
y

)�x

x

�y

y

x!y !

Now, to find p(z |�
z

), sum p(x , y) over all (x , y) satisfying x + y = z :

p(z |�
z

) =
zX

x=0

e

�(�
x

+�
y

)�x

x

�z�x

y

x!(z � x)!

=
e

�(�
x

+�
y

)

z!

zX

x=0

z!�x

x

�z�x

y

x!(z � x)!

=
e

�(�
x

+�
y

)

z!
(�

x

+ �
y

)z , by the binomial theorem
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Combining Other Variables

Rules of the road:
I The sum of two Poisson variables is also a Poisson variable, even if the

means are different.
I The sum of two Gaussian variables is a Gaussian, even if the means

and variances are different.
This is not true for the binomial distribution. In this case:

mean = np1 + Np2, variance = np1(1 � p1) + Np2(1 � p2)

This does not have the general form of the binomial distribution unless
p1 = p2. Also note:

I The difference of two Poissons is not Poisson; it follows a Skellam
distribution.

I Beware of other false assumptions. E.g., the ratio of two Gaussians is
not another Gaussian!
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Gaussian Distribution

I You are already familiar with the Gaussian PDF:

p(x |µ,�) = 1p
2⇡�

exp
✓
�(x � µ)2

2�2

◆

I The Gaussian is the limiting case of the Poisson distribution (� ! 1)
and the binomial distribution (n ! 1).

I Rules of thumb:
I Poisson is a good approximation of binomial if n � 20 and p  0.05.
I Gaussian is a good approximation of Poisson if � � 20.
I Gaussian is a good approximation of binomial if np(1 � p) > 9.

I So basically the Gaussian is usually “safe” for large numbers, but
beware of using it in the wrong situation.

I The Gaussian has smaller tails than many other distributions and
misusing it can cause you to overestimate the significance of rare
events.
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Central Limit Theorem

I Why is the Gaussian so important? Because of the Central Limit
Theorem.

I
Theorem: the sum of n independent continous random variables x

i

with means µ
i

and variances �2
i

becomes a Gaussian with mean and
variance

µ =
nX

i=1

µ
i

�2 =
nX

i=1

�2
i

in the limit n ! 1.
I See Cowan [2] for a proof based on characteristic functions
I Generally, this is true independent of the individual forms of the PDFs

of the x

i

(see next slide).
I Since it is common for many measurements to add together in

experiment, the Central Limit Theorem justifies the use of the
Gaussian in many cases.
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Central Limit Theorem
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Multidimensional Gaussian
I The k-dimensional generalization of the Gaussian is

p(x |µ,⌃) =
1p

(2⇡)k |⌃|
exp

✓
�1

2
(x � µ)>⌃�1(x � µ)

◆

I In this expression, x = (x1, x2, . . . , x
k

) is a vector with mean
µ = (µ1, µ2, . . . , µ

k

).
I ⌃ is the covariance matrix of the Gaussian. Its diagonal elements are

the variances of the x

i

, and its off-diagonal elements are the
covariances cov (x

i

, x
j

).

Example

Binormal distribution: for k = 2, ⌃ is a 2 ⇥ 2 real symmetric matrix:

x =

✓
x

y

◆
, µ =

✓
µ
x

µ
y

◆
, ⌃ =

✓
�2
x

�
xy

�
xy

�2
y

◆
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Change of Variables

I The covariance matrix fully
specifies any correlations or
anti-correlations between the
elements of x .

I If all of the elements of x are
independent, then the
covariance matrix is diagonal.

I If correlations exist, then there is
a unitary matrix U that we can
identify to diagonalize ⌃. I.e.,

⌃0 = U⌃U

>.

I It is often convenient to change
variables to ⌃0.

Segev BenZvi (UR) PHY 403 25 / 33



Uniform Distribution

I The uniform (a.k.a. the “top hat” distribution) has a probability which
is constant inside some range [a, b] and zero outside:

p(x |a, b) =
(

1
b�a

a  x  b,

0 else

I Mean: hxi = (a+ b)/2
I Variance: V (x) = (b � a)2/12
I Standard deviation: �

x

= (b � a)/
p

12
I The uniform distribution is important for two reasons:

1. It is the basis for a large number of pseudorandom number generators.
2. Its constant probability indicates no preferred values inside the range

[a, b], making it a popular “objective” prior probability density in
Bayesian calculations.
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�2 Distribution

I The �2 distribution of the continuous variable z is

p(z |n) = 1
2n/2�(n/2)

z

n/2�1
e

�z/2,

where � is the gamma function:

�(x) =

Z 1

0
e

�t

t

x�1
dt

I Note: �(x + 1) = x�(x), and �1/2 =
p
⇡. For integer x ,

�(x + 1) = x!.
I

Mean: E (x) = n

I
Variance: V (x) = 2n

I The simple variance and mean of the �2 distribution make its tail
probabilities easy to estimate.
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�2 Distribution

I For n independent Gaussian x

i

with means µ
i

and variances �2
i

,
the quantity

z =
nX

i=1

(x
i

� µ
i

)2

�2
i

follows a �2 with n degrees of
freedom.

I Notice that z looks like a
least-squares estimator for a fit.

I Physicists often use the tail
probability of �2 as a measure of
goodness of fit.
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Using the �2 Distribution

Example

You are shown a fit and told that �2 is 70 for 50 degrees of freedom. Is the
fit any good? In other words, how likely is it that �2 could be this large by
chance?

Roughly: we expect the mean to be n = 50, and the variance is 2n = 100
with RMS

p
100 = 10. So this is a 2� effect, which happens ⇠ 2.5% of the

time if we approximate using the Gaussian definition of �.

I If �2 � n, then either your model is not a good fit to the data or you
badly understimated your uncertainties �

i

.
I If �2 ⌧ n, you should also be suspicious. You might have

overestimated your uncertainties.
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A Warning about Using the �2 Distribution
I Recall the warning given at the end of the last class: the �2 statistic z

is only asymptotically distributed like a �2 distribution if the
uncertainties on each x

i

are Gaussian.
I Where this can hurt you: fitting binned data.

I Remember that if your histogram bins are relatively full the
uncertainties on the counts in each bin will be Gaussian

I But if the bins are empty or close to empty, the uncertainties in the
counts will be Poisson, and z will not follow the �2 distribution!
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Exponential Distribution

I The exponential PDF is

p(x |�) = 1
�
e

�x/�, x � 0

I
Mean: E (x) = �.

I
Variance: V (x) = �2, RMS: �

I Lack of memory:
p(t � t0|t � t0,�) = p(t|�).

I Decay time of unstable particle
with lifetime � ! ⌧

I Lifetime of electrical
components, such as lightbulbs
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Power Law (Pareto) Distribution

I Power law:

p(x |↵) = Cx

�↵

I The power law shows up all over
physics, and is characteristic of
scale invariance, hierarchy, or
stochastic generating processes.

I Examples: populations of cities,
sizes of lunar impact craters,
energies of cosmic rays, sizes of
interstellar dust particles,
magnitudes of earthquakes, . . .
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Further Reading I

[1] R.J. Barlow. Statistics: A Guide to the Use of Statistical Methods in

the Physical Sciences. New York: Wiley, 1989.

[2] Glen Cowan. Statistical Data Analysis. New York: Oxford University
Press, 1998.
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