
Physics 403
Monte Carlo Techniques

Segev BenZvi

Department of Physics and Astronomy
University of Rochester



Table of Contents

1 Simulation and Random Number Generation
Simulation of Physical Systems
Creating Fake Data Sets for Stress Tests
Parameter Estimation with Monte Carlo

2 Pseudo-Random Number Generators (PRNGs)
Linear Congruential Generators
Seeding the RNG
The Mersenne Twister
The Xorshift Algorithm
Juking the Stats: Benford’s Law

3 Sampling from Arbitrary PDFs
Inversion Method
Acceptance/Rejection Method
Generating Gaussian and Poisson Random Numbers

Segev BenZvi (UR) PHY 403 2 / 32



Simulation and Random Number Generation in Physics

“Monte Carlo” methods are a broad set of techniques for calculating
probabilities and related quantities using sequences of random numbers.

I Simulate physical systems with models of noise and uncertainty
I Simulate data with known inputs to stress-test your analysis (“data

challenges”). Can be quite extensive...
I Perform calculations that cannot be done analytically or with a

deterministic algorithm. E.g., function minimization, or many
high-dimensional integrals

I Inverse Monte Carlo: estimate best-fit parameters with uncertainties
using many simulated data sets – avoid explicit and difficult
uncertainty propagation

All this depends upon the generation of (pseudo-)random numbers. This
means you MUST understand how random number generators (RNGs)
work!

Segev BenZvi (UR) PHY 403 3 / 32



Example Simulation from U of R Faculty
Physics of granular materials which become rigid with increasing density
(“jamming” transition) [1]:

Segev BenZvi (UR) PHY 403 4 / 32



Example “Data Challenge”
The Laser Interferometer Gravitational Wave Observatory (LIGO) is
(in)famous for carrying out extensive data challenges [2]

Very important to conduct end-to-end “stress tests” in
background-dominated analyses. Above: fake binary merger injected into
LIGO data stream, 2011

Segev BenZvi (UR) PHY 403 5 / 32



Example of Inverse Monte Carlo
From paper on discovery of cosmic-ray “hot spots” [3]:

Segev BenZvi (UR) PHY 403 6 / 32



Table of Contents

1 Simulation and Random Number Generation
Simulation of Physical Systems
Creating Fake Data Sets for Stress Tests
Parameter Estimation with Monte Carlo

2 Pseudo-Random Number Generators (PRNGs)
Linear Congruential Generators
Seeding the RNG
The Mersenne Twister
The Xorshift Algorithm
Juking the Stats: Benford’s Law

3 Sampling from Arbitrary PDFs
Inversion Method
Acceptance/Rejection Method
Generating Gaussian and Poisson Random Numbers

Segev BenZvi (UR) PHY 403 7 / 32



Pseudo-Random Numbers

I We need to generate sequences of random numbers to model noise
and uncertainty.

I Computers are not random, they are deterministic. So how do we get
random sequences of numbers?

I Answer: we don’t. We get pseudo-random sequences and try to use
them in clever ways.

Segev BenZvi (UR) PHY 403 8 / 32



Pseudo-Random Number Generators (RNGs)
Linear Congruential Generator

I An old but popular technique of generating pseudo-random number
sequences is the linear congruential generator (LCG)

I A sequence of values xi is generated using the recurrence relation

xn+1 = (axn + c) mod m

I Generate integers in [0,m − 1]. The longest sequence with no
repeating values, called the period of the RNG, is at most m.

I Note: if m is an unsigned integer (uint32_t on most systems) then
the period will be 232 ≈ 4× 109. (264 ≈ 1018.) Most real simulations
need orders of magnitude more numbers than this!

I Hull-Dobell Theorem: the full period is achieved iff c and m are
co-prime, a− 1 is divisible by all prime factors of m, and a− 1 is a
multiple of 4 if m is a multiple of 4.

Segev BenZvi (UR) PHY 403 9 / 32



Choosing the Random Seed

I Note that the LCG is deterministic. If you start from the same x0, a
value known as the seed, you always get the same sequence.

I The choice of seed can affect the performance of the LCG; i.e., a poor
choice could lead to a period � m.

I Determinism is great for debugging, but if you generate the same
numbers over and over you aren’t getting a pseudo-random sequence

I Common mistake: accidentally hardcoding the seed into your
simulation code

I Solution 1: use system clock to choose x0 via a call to time(0);
returns time in seconds since 00:00 UT, 1 Jan 1970 (Unix epoch).

I Be careful to use the lowest-order bits of the time, including
milliseconds. If you just use the seconds, what happens on a computing
cluster if multiple jobs start simultaneously?

Good enough for physics simulations, but not cryptography

Segev BenZvi (UR) PHY 403 10 / 32



Choosing the Random Seed

I Solution 2: use the reservoir of random bits in computer’s entropy
pool, accessible in /dev/random. Could be noise measured in a
resistor, or clock drift [4], or a peripheral device connected to a source
of quantum randomness

I However you generate the seed, make sure you always save the seed
value so you can regenerate the sequence later for checks!

Segev BenZvi (UR) PHY 403 11 / 32



Known Issues to Watch For

I The LCG is fast but has some
known problems

I Many RNGs can produce hidden
long-range correlations between
values in the sequence.

I Ex.: if you generate
n-dimensional points with the
LCG, the points will lie on
(n!m)1/n hyperplanes [5].

I Clearly random numbers
shouldn’t do that.

I Could this affect your
simulation? Maybe. Depends on
your application.

Segev BenZvi (UR) PHY 403 12 / 32



Alternatives to the LCG
Mersenne Twister

I Most popular RNG currently in use is an algorithm called the
Mersenne Twister [6], which uses the matrix linear recurrence relation

xk+n = xk+m ⊕ (xuk | x lk+1)A

with | = bitwise OR and ⊕ = bitwise XOR.
I For n = degree of recurrence, w = word size in bits, and

0 ≤ r ≤ w − 1 = bits in lower bitmask, the algorithm requires that the
period length

2nw−r − 1

is a Mersenne prime – a prime number of the form 2n − 1.
I The MT implementation in Python and C++ (Boost, ROOT) has

period 219937 − 1 ≈ 4× 106001.

Segev BenZvi (UR) PHY 403 13 / 32



Alternatives to the LCG
Xorshift Algorithms

I Another class of RNG is called Xorshift (“XOR-shift”), which depends
on a combination of XOR and bit shift operations [7].

I These are extremely fast because XOR and shifting are simple CPU
instructions. Example: a 2128 − 1 period algorithm

#include <cstdint>

// State variables; start s.t. not all = 0
uint32_t x, y, z, w;

uint32_t xorshift128() {
uint32_t t = x ^ (x << 11);
x = y; y = z; z = w;
return w = w ^ (w >> 19) ^ t ^ (t >> 8);

}

Segev BenZvi (UR) PHY 403 14 / 32



Human-Generated Random Numbers

I How good are you at generating random numbers?

Example
Without over-thinking this, take a minute to write down as many random
values between 1 and 100 as you can.

I What does the distribution of numbers look like?
I How would you tell if this is really a random sequence? Is it easy to

predict parts of the sequence (auto-correlation)?
I Do we need to specify more information to answer this question?

Segev BenZvi (UR) PHY 403 15 / 32



Benford’s Law

I If you are like most people, you didn’t repeat numbers enough
(remember the demon in the cartoon...)

I Also, your “random” sequence is probably uniform between 1 and 100
I However, in many sources of data the values follow a distribution

known as Benford’s Law: 1 is the leading digit 30% of the time, 2 is
the leading digit 18% of the time, etc.

I If you pick a number randomly from the logarithmic number line, it
will roughly follow Benford’s Law

I This rule can be used to detect fraudulent numbers in elections,
accounting (stock prices), and scientific papers.

Segev BenZvi (UR) PHY 403 16 / 32



Table of Contents

1 Simulation and Random Number Generation
Simulation of Physical Systems
Creating Fake Data Sets for Stress Tests
Parameter Estimation with Monte Carlo

2 Pseudo-Random Number Generators (PRNGs)
Linear Congruential Generators
Seeding the RNG
The Mersenne Twister
The Xorshift Algorithm
Juking the Stats: Benford’s Law

3 Sampling from Arbitrary PDFs
Inversion Method
Acceptance/Rejection Method
Generating Gaussian and Poisson Random Numbers

Segev BenZvi (UR) PHY 403 17 / 32



Generating Arbitrary Random Numbers

I All of the RNGs we have discussed will produce uniformly distributed
random numbers:

I LCG generates numbers between [0,m]
I MT generates numbers between [0, 1]

I This is great for situations when you want a uniform distribution, but
that does not correspond to most physical situations

I Luckily, there are several ways to convert a uniform distribution to an
arbitrary distribution:

1. Transformation or inversion method
2. Acceptance/rejection method

I The transformation method is generally the most efficient technique,
but it is only applicable in cases where the PDF you want is integrable
and the CDF can be inverted

I Acceptance/rejection is less efficient but works for any PDF you will
want to use for random draws

Segev BenZvi (UR) PHY 403 18 / 32



Transformation/Inversion Method

Given a PDF p(x |I ) and its CDF
F (x) =

∫ x
−∞ p(x ′|I ) dx ′:

1. Generate a uniform random
number u between [0, 1]

2. Compute the value x s.t.
F (x) = u

3. Take x to be the random draw
from p(x |I )

In other words, from u and the
invertible CDF F (x), the value
x = F−1(u) is distributed according
to p(x |I ).

Segev BenZvi (UR) PHY 403 19 / 32



Transformation/Inversion Method
Exponential Distribution

Example
The PDF of the exponential distribution is

p(x |ξ) = 1
ξ
e−x/ξ

and the CDF is

F (x) = P(X ≤ x |ξ) =
∫ x

0

1
ξ
e−x

′/ξ dx ′ = 1− e−x/ξ

Therefore, given u ∈ [0, 1] we can generate x according to p(x |ξ) by
inverting the CDF:

u = F (x) = 1− e−x/ξ

x = F−1(u) = −ξ ln (1− u) = −ξ ln u

Segev BenZvi (UR) PHY 403 20 / 32



Limits of the Inversion Method

I Inversion is very efficient and great if you can invert your CDF
I Unfortunately this condition is not fulfilled even for many basic 1D

cases

Example
The CDF of the Gaussian distribution is

F (x) =

∫ x

−∞
p(x |µ, σ) = 1

2

[
1+ erf

(
x − µ
σ
√
2

)]
The error function cannot be expressed in closed form, though there are
numerical approximations to erf and erf−1 in scipy.

I A trick for complicated PDFs: express the CDF as a tabulated list of
values (u,F (x)), “invert” it, and interpolate.

Segev BenZvi (UR) PHY 403 21 / 32



Acceptance/Rejection Method

Very old technique; modern form due
to von Neumann. AKA “hit and
miss,” it generates x from an
arbitrary f (x) using a so-called
instrumental distribution g(x), where
f (x) < Mg(x) and M > 1 is a bound
on f (x)/g(x).

1. Sample x from g(x) and
u ∈ [0, 1].

2. Check if u < f (x)/Mg(x)
I Yes: accept x
I No: reject x , sample again

Very easy to implement, no limits on
f (x).

Calculation of π: uniformly generate
(x , y) pairs in box, count up points
inside the circle. π ≈ 4Ncircle/Nbox.

Segev BenZvi (UR) PHY 403 22 / 32



Buffon’s Calculation of π
I An early variant of the Monte Carlo approach can be seen in Buffon’s

Needle (1700s), a method of calculating π

Given a need of length L dropped on a plane with parallel lines d units
apart, what is the probability the needle will cross a line if L < d?

I x is center distance to nearest line; x ∼ U(0, d/2)
I θ is angle between needle center line: θ ∼ U(0, π/2)
I Needle crosses line if x ≤ L sin θ/2. Joint PDF:

P =

∫ π/2

0
dθ

∫ L sin θ/2

0
dx

4
πd

=
2L
πd

Segev BenZvi (UR) PHY 403 23 / 32



Acceptance/Rejection Method
Sampling from a 1D Distribution

Example

Suppose f (x) = 3
8(1+ x2) for −1 ≤ x ≤ 1. (Aside: do you recognize this

distribution?)
I Generate random x ∈ [−1, 1] and y ∈ [0, 0.75].
I If y < f (x), populate the histogram with x .

Segev BenZvi (UR) PHY 403 24 / 32



Acceptance/Rejection Method
Sampling from a 2D Distribution

Example
Suppose we want to sample from the 2D angular distribution

1
N

dN

d cos θdϕ
= (1+ cos θ)(1+

1
2
cos 2ϕ)

Generate triplets (x , y , z), where x = ϕ ∈ [0, 2π], y = cos θ ∈ [−1, 1], and
z ∈ [0, 3], keeping (x , y) if z < f (x , y):

Segev BenZvi (UR) PHY 403 25 / 32



Limitations of Acceptance/Rejection

Ideally you know fmax or normalize f (x) = p(x |I ) to have a maximum of 1.
I If not, you’ll have to pre-scan the parameter space in advance.

If f (x) ranges over many orders of magnitude, acceptance/rejection can be
very inefficient as you’ll waste lots of time in low-probability regions.
Possible approaches:

I Subdivide x into ranges with different fmax.
I Use importance sampling, where you generate random numbers

according to a function that evelopes the PDF you really want to
sample

Example implementation: vegas package in Python, an implementation of
the adaptive Monte Carlo VEGAS multi-dimensional integration algorithm
[8]

Segev BenZvi (UR) PHY 403 26 / 32



Monte Carlo Integration
I We can also solve integrals (esp. in several dimensions) with Monte

Carlo. Mathematically, we approximate the integral by the average of
the function of the interval of integration:

I =

∫ b

a
f (x) dx ≈ (b − a)E (f (x))

I We take discrete samples of f and let the MC estimate converge to
the true integral as the number of samples gets large:

E (f (x)) =
1
N

N∑
i=1

f (ui )→
1

b − a

∫ b

a
f (u) du

I = IMC =
b − a

N

N∑
i=1

f (xi )

I Error on the result given by the Central Limit Theorem:

σ =

√
V (f )√
N
∝ 1√

N
.

Segev BenZvi (UR) PHY 403 27 / 32



Generating a Gaussian Random Number

How would you generate a Gaussian random number?

1. You can use inversion if you can numerically estimate erf−1.
2. You can use the acceptance/rejection method if you don’t mind

wasting some calculations.
3. You can exploit the Central Limit Theorem. Sum 12 uniform variables,

which approximates a Gaussian of mean 12× 0.5 = 6 and a variance
of 12× (1/12) = 1. Subtract 6 to get a mean of zero. This takes even
more calculation and isn’t exact.

4. Use the polar form of the binormal distribution

p(x , y |I ) = 1
2π

exp
{
−1
2
(
x2 + y2)}

to generate two Gaussian random numbers at once.

Segev BenZvi (UR) PHY 403 28 / 32



Box-Müller Algorithm

Re-express the 2D Gaussian PDF in polar coordinates:

p(x , y |I ) dx dy =
1
2π

exp
{
−1
2
(
x2 + y2)} dx dy

=
1
2π

exp− r2

2
r dr dϕ

Then generate an exponential variable z = r2/2, change variables to r , and
generate a uniform polar angle ϕ:

I z = − ln u1 for u1 ∼ U(0, 1)
I r =

√
2z

I ϕ = 2πu2 for u2 ∼ U(0, 1)
Then x = r cosϕ and y = r sinϕ are two normally-distributed random
numbers. Very elegant! But due to the calls to trascendental functions
(sqrt, log, cos, etc.), numerical approaches could be faster in practice...

Segev BenZvi (UR) PHY 403 29 / 32



Generating a Poisson Random Variable

The best way to generate a Poisson random variable is to use inverse
transform sampling of the cumulative distribution.

I Generate u ∼ U(0, 1)
I Sum up the Poisson PDF p(n|λ) with increasing values of n until the

cumulative sum exceeds u:

sn =
n∑

k=0

λke−λ

k!
, while sn < u

I Return the largest n for which sn < u.

This will work quite well until λ gets large, at which point you may start
experiencing floating-point round-off errors due to the factor of e−λ. But
for large λ you an start to use the Gaussian approximation.

Segev BenZvi (UR) PHY 403 30 / 32



References I

[1] D. Vågberg, P. Olsson, and S. Teitel. “Universality of Jamming
Criticality in Overdamped Shear-Driven Frictionless Disks”. In: Phys.
Rev. Lett. 113 (14 Oct. 2014), p. 148002. URL:
http://link.aps.org/doi/10.1103/PhysRevLett.113.148002.

[2] J. Abadie et al. “Search for Gravitational Waves from Compact Binary
Coalescence in LIGO and Virgo Data from S5 and VSR1”. In:
Phys.Rev. D82 (2010), p. 102001. arXiv: 1005.4655 [gr-qc].

[3] A. A. Abdo et al. “Discovery of Localized Regions of Excess 10-TeV
Cosmic Rays”. In: Phys. Rev. Lett. 101 (22 Nov. 2008), p. 221101.
URL:
http://link.aps.org/doi/10.1103/PhysRevLett.101.221101.

[4] Z. Jerzak. Clock Synchronization in Distributed Systems. Sept. 2009.
URL: http://www.slideshare.net/zbigniew.jerzak/clock-
synchronization-in-distributed-systems.

Segev BenZvi (UR) PHY 403 31 / 32

http://link.aps.org/doi/10.1103/PhysRevLett.113.148002
http://arxiv.org/abs/1005.4655
http://link.aps.org/doi/10.1103/PhysRevLett.101.221101
http://www.slideshare.net/zbigniew.jerzak/clock-synchronization-in-distributed-systems
http://www.slideshare.net/zbigniew.jerzak/clock-synchronization-in-distributed-systems


References II
[5] Linear Congruential Generator. Jan. 2015. URL: http:

//en.wikipedia.org/wiki/Linear_congruential_generator.

[6] M. Matsumoto and T. Nishimura. “Mersenne Twister: A
623-dimensionally Equidistributed Uniform Pseudo-random Number
Generator”. In: ACM Trans. Model. Comput. Simul. 8.1 (Jan. 1998),
pp. 3–30. URL: http://doi.acm.org/10.1145/272991.272995.

[7] George Marsaglia. “Xorshift RNGs”. In: Journal of Statistical Software
8.14 (July 4, 2003), pp. 1–6. URL:
http://www.jstatsoft.org/v08/i14.

[8] G. Peter Lepage. “A New Algorithm for Adaptive Multidimensional
Integration”. In: J. Comp. Phys 27 (2 May 1978), p. 192. URL:
http://dx.doi.org/10.1016/0021-9991(78)90004-9.

Segev BenZvi (UR) PHY 403 32 / 32

http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://doi.acm.org/10.1145/272991.272995
http://www.jstatsoft.org/v08/i14
http://dx.doi.org/10.1016/0021-9991(78)90004-9

	Simulation and Random Number Generation
	Simulation of Physical Systems
	Creating Fake Data Sets for Stress Tests
	Parameter Estimation with Monte Carlo

	Pseudo-Random Number Generators (PRNGs)
	Linear Congruential Generators
	Seeding the RNG
	The Mersenne Twister
	The Xorshift Algorithm
	Juking the Stats: Benford's Law

	Sampling from Arbitrary PDFs
	Inversion Method
	Acceptance/Rejection Method
	Generating Gaussian and Poisson Random Numbers


