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Principle of Indifference

Uniform and Jeffreys Priors

» Principle of Indifference: given n > 1 mutually exclusive and
exhaustive possibilities, each should be assigned a probability equal to
1/n.

» Matches our intuition, and we've been applying it throughout the
course. We can also use it to derive PDFs.

» Uniform prior is appropriate for a location parameter:

1
p(X|l) = constant = ————,
Xmax — Xmin
» Jeffreys prior is appropriate for a scale parameter:
1

P = T Coma i)

It gives equal probability per decade.
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Principle of Maximum Entropy

» Principle of Maximum Entropy: the least informative prior is the
one which maximizes

5= _ZN:Piln(Pi/mi) or 5= —/P(X)|” <:7((§))>dx
i=1

» By maximizing S under different constraints we can derive familiar
PDFs using Lagrange multipliers

» Example: given the normalization condition > p; = 1, a fixed mean g,
and a fixed variance o2, the maximum entropy distribution is a
Gaussian

» Important result: a Gaussian model of the uncertainties is a safe
choice. Other distributions may give you artificially tight constraints
unless you have appropriate prior information
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Case Study

Reconstructing Air Showers with the HAWC Detector
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Extensive Air Showers
Particle Cascades in the Upper Atmosphere

Cosmic ray

Segev BenZvi (UR)

Gamma rays and nuclear cosmic
rays interact in the atmosphere

A particle cascade, or air shower,
of charged particles is produced

The shower is shaped like a
pancake: a few meters thick and
O(100) meters across

The “pancake” moves at speed
v & ¢ to the ground, where the
charged particles can be
detected

At altitude of Rochester, mostly
muons remain at ground level.
Flux is ~ 100 m™2 s~1 sr1.
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Fitting the Air Shower Plane

Run 2105, Time slice 140025, Event 89
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Two fits: “plane” and “curved” shower.
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Consequence of Incorrect PDFs

In HAWC we make two fits to the

shower front: \
. s T| —=— PDFAngleFit
1. Planar fit s \ - LHAngleFit
“ A & Plane Fit
2. More correct “curved” fit R
3 L PDFAngleFit agrees
What happens when we attempt £ [ with LHAngleFit
. . . . . f= L
a maximum likelihood fit with < \Z'\,
) . ) 7277
simulated time residual PDFs? A g A
. = [
worse result than plane fit.
PN R S T TN NS S S S TR S N SO T S N SO T
. . 200 400 600 800 1000 1200
» Why? Timing PDFs are Number of Hits

narrow, but wrong
» Naive parameterization with As Nyix — large, the likelihood fit with

Gaussian uncertainties is shower curvature should be better than
better than correct the plane fit. Instead, it gets worse.
parameterization with Solution: try to do better with the PDFs.

incorrect PDFs.
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Estimators

We have seen how the PDF encodes what we want to know about a
parameter given data D and relevant background information /.
» An estimator is a summary of this distribution

» Could be a parameter of the PDF. E.g., p for a binomial distribution
» Could be a property of the distribution, like the mean

v

You have total freedom to make up any estimator you want, but you'll
want to report two numbers:

1. The best estimate itself
2. A measure of the reliability of the estimate

v

Question: what do we mean by “best” estimator?

\4

Question: what do we mean by the “reliability” of the estimator?

v
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Bayesian Solution to Parameter Estimation

» If the data D are distributed according to a parameter 6, the PDF of
can be obtained using Bayes' Theorem:

p(DI0,1) p(6I!)
p(DI[1)
__p(DI9, 1) p(Olr)
J d9 p(D10,1) p(6]1)

» The posterior p(6|D, 1) contains all the relevant information about 6.

p(8ID, 1) =

» You can choose to report the entire distribution or provide a summary
of the parameter

» If you're worried about the effect of priors, publish the likelihood
p(D10, 1) and/or show the effect of different priors on p(6|D, I)
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Frequentist Approach to Parameter Estimation

v

Remember that frequentists don't use p(6|D, I); only p(D|0,1).

In other words, there is not really a concept of 8 varying. Instead, 0
has a fixed, “true” value (albeit unknown)

v

v

Consequence: p(D|6, 1) = “probability of the data given a fixed 0"

\4

So the frequentist answers the question, “"How probable is it that we
observed this data D given some value of 67"

v

Most of frequentist statistics involves calculating p-values, or tail
probabilities of p(D|6, ).

Because they assume a value for 6, p-values are a little dangerous
when used to make decisions about the likelihood of a parameter or a
model. They can overstate the evidence against your hypothesis about

6.

This is one of the reasons that physicists use the 50 rule of
overwhelming evidence when using p-values

v

\4
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Bayesian vs. Frequentist Interpretations

» Bayesian: given D, the uncertainties tell us that the true value of the
parameter lies within the ellipse centered on the observation with some

probability

» Frequentist: given the true value of the parameters, the observation

lies within an error ellipse centered on the true value with some

probability
Bayesian Frequentist
e2 true ez observed
observed true
0 0

Segev BenZvi (UR)
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What is a Best Estimator?

» Let's answer the question of what defines a best estimator.

» Intuitive: it should be where the posterior PDF p(x|D, /) is a
maximum, meaning
dp

dx =0

X

For this to be a maximum, we also require that

d?p

W <0

X

» If X gives the best estimator, then how do we define the reliability of
the estimator?
» Look at the behavior of the PDF in a small region around the peak.
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Reliability of an Estimator?

» Let's look at the Taylor expansion of p about X, or better yet, In p:
L=Inp=Inp(x|D,I)

» We use the logarithm because p will often be a “peaky” function of x
near X. L varies more slowly and is a monotonic function of p.

» Taylor expanding L about X, we get

1d%L

_ o Y= _2\2
L—L(x)—|—2dX2 (x—=%)"+...

X

» The first term is a constant. The linear term vanishes (we're at the
maximum). So the quadratic term dominates, and
2L

1d
D)~ A S—
p(x|D, 1) ~ A exp [2 9

)?(X - )?)2}
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Reliability of an Estimator?
» Compare the Taylor-expanded posterior PDF

1d°L ol
p(x|D, 1)~ A exp [EF A(x—x)z
to the Gaussian
1 (x = )?]
2
x|p,0%) = —exp | ————r
Pl %) = —— p[ ]

» We can identify the width of the Gaussian as

d2l_ -1/2
-2

with d?L/dx? < 0 (we're at the maximum). Hence, we express the
parameter as

x=X+to,
where X is the best estimate and o is its reliability.
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Accuracy and Precision
Frequentist Aside

» It is useful to think of an estimator in terms of accuracy and precision
(Variance/Statistics)

» Accuracy: how close is the estimator to true value? (Systematics)
» Precision: how clustered is the estimator about a central value?

High Accuracy

High Precision

Low Accuracy
High Precision
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High Accuracy

Low Precision

Low Accuracy
Low Precision
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Consistency and Bias

Caution: Frequentist Concept

» In the context of a sample of N measurements, we say that an
estimator of 6, called 6, is consistent if

lim P(|§—0] >¢)=0, Ye>0
N—oo

l.e., § converges to 6 in the large N limit.

» We call an estimator unbiased if the bias b
b(0) =E(0)—0

is zero.

» An estimator can be biased even if it is consistent. If § — @ for an
infinite set of measurements in one experiment, it is not necessarily
true that & — 6 in an infinite set of experiments with a finite number
of measurements.
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Mean Squared Error (or Deviation)

» It is helpful to think of bias as a systematic error which does not
improve with more data

» Another popular measure of the quality of an estimator is the mean
squared error, defined as

(
=E((0-E9)") + (E(B) —6)

> |.e., the mean squared error (MSE) is the sum of the variance and the
square of the bias.

» Classical interpretation: since the variance is the square of the
uncertainty in the estimator, the MSE is the quadrature sum of
statistical and systematic uncertainties.

» Root mean square (RMS) is defined as vMSE.
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What Makes a Good Estimator
Frequentist Aside
Let's define the three properties we expect from a good estimator.
1. Consistent: a consistent estimator will tend to the true value as the
amount of data approaches infinity:
lim §=6
N—o0

2. Unbiased: the expectation value of the estimator is equal to the true
value, so its bias b vanishes:

b:<é>—9:/dxp(x|9) B(x)— 0 =0

3. Efficient: the variance of the estimator is as small as possible (we'll
see how small when we discuss the method of maximum likelihood):

A

var (0) = / dx p(x|0) (A(x) — )?
MSE = ((§ — 6)?) = var () + b

As you have seen, it is not always possible to satisfy all-three requirements.
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Case Study: Efficiency Uncertainty

Example

Suppose you use simulation to determine a selection efficiency: n out of N
events pass some cuts. What is the selection efficiency € and its
uncertainty?

This is a binomial process: fixed trials N, fixed successes n, probability of
success €. Therefore,

p(n|N,e) o "(1 —e)N=n
and

L=1Inp = constant + nlne+ (N —n)In(1 —¢)
d.. ' n N-—n
de € 1—e
d2L_ n N —n

d2 = &2  (1—¢)?
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Case Study: Efficiency Uncertainty
Example
For the optimal value of ¢, dL/de = 0:

%
de

My o

SR

This is a pretty intuitive result: the best estimate of the efficiency is just
n/N. Mixing in a frequentist concept: is it biased?

(), _ Ne _

b=E(€)—e= N €=

e=0

So € is an unbiased estimator.
What about its uncertainty?
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Case Study: Efficiency Uncertainty

Example

The estimated variance is given by

=il
52 — — ﬂ
de? |,

After substituting € = n/N and combining terms, this reduces to

Ll N

dez|,” {1-29

. 62_@(1—€)_n(N—n)
’ N N3

The expectation of 52 is, after some more algebra,

N-+1
N

E(62) = o? (slight bias)

Segev BenZvi (UR)
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Asymmetric PDFs

» What happens when we have a very asymmetric PDF? In this case the
expansion about the maximum may not be so reasonable.

prob(X |{data},l)

» This is where the concept of confidence intervals (or “credible regions”
for a Bayesian) come in. We define

X2

p(x1 < x < x2|D, 1) :/ p(x|D, 1) dx ~ a,

X1
where o = 0.68 (for example), and identify x; and xo.
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Multimodal PDFs

» What happens when we the PDF is multimodal? Can we even
describe a “best parameter” and its uncertainty properly?

=3
=
o

o 9
w o
o

0.30
0.25

ity density p(z|I)

0.20
2015
2
£ 0.10
=3

0.05

0.00

z

» You could try to summarize the posterior using > 2 best estimates and
their error bars, or some kind of disjoint confidence interval.

» Alternatively: cut your losses and just report the full posterior PDF.
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Gaussian Uncertainties

» Suppose we are measuring values x = {x;} drawn from a Gaussian

distribution of mean 1 and variance o2.

v

For today, assume o is known but 1 is not. How do we estimate
given the data?

v

Starting from Bayes' Theorem,

p(plx, 0 1) o< p(x|u, 0%, 1) p(ulo®, 1)

\4

Likelihood: If the measurements x; are independent, then

N 1 (% — n)?
2y — , 2y = _ M P
p(X‘,UJ,O' 7/) - il—‘[p(xll:uao- 7/) - (27TO'2)N/2 exp ( Z 20-2 )

1

v

Prior: 1 is a location parameter, so we'll use a uniform prior
1
Hmax — Mmin
which vanishes outside x € [min, ftmax]-
26 / 33
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Gaussian Uncertainties
Estimate of the Mean

» As in the earlier examples, let's maximize the logarithm of the
posterior PDF to get the best estimate for p:

N

L = In p(u|x, 02,1 = constant — Z
i=1

(xi — p)?
202

» Differentiating, we have

dL
du

ﬂ_izl
R 1
U= NZX,’.

So the best estimate of 1 is the arithmetic mean of the measurements,
independent of the spread given by o.
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Gaussian Uncertainties
Uncertainty of the Mean

» We estimate uncertainty of the mean using the second derivative, as

before:
N

d’L 1 N
S - k-4
dpsls i-1 7 7

\4

Therefore, our best estimate and uncertainty on the mean is

summarized by
o

p=pE NG
We have recovered the familiar expression often referred to as the
“error on the mean,” and derived the familiar rule that uncertainties
decrease with measurement as 1/v/N.

v

v

The only requirement is the validity of the quadratic expansion of the
posterior PDF, which is exactly true for the Gaussian.

v

This rule applies often in the lab thanks to the tendency of additive
sources of noise to look Gaussian (Central Limit Theorem)
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Different-Sized Error Bars

» What happens if the uncertainties in each x; differ? As long as the
source of uncertainties is Gaussian, then

1 (xi — p)?
X|/“L7 HPXI‘/“L; mexp —ZT
[ 1

where X is the diagonal covariance matrix of the {x;}.
» Taking the logarithm and differentiating gives

N

(x; — p)>
L =Inp=constant — Y -~
n p = constan ; 20,2
N
dL X; — |
—_— fu— :0
it ,Z; o
N N N
i Sonted [ 3o = Yo [ 3o
i=1 i=1 i=1
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Different-Sized Error Bars

» For the uncertainty on the mean, we have

1
L

=0

N —1/2
(Z ) s w; = 1/0,-2

» So for the case of different uncertainties on each measurement x;, the
best estimator of the mean is the arithmetic sum of the data inversely

weighted by the uncertainties.
» This makes a lot of sense; we want the data points with the biggest
uncertainties to contribute the least to the sum

d2

7;>
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Summary

» We can identify the best estimator of a PDF by maximizing it, so that

@
dx

%
» We assessed the reliability of the estimator by Taylor expanding
L = In p about the best value:
-1
)

2
52 = fﬂ
dx?

» This only works when the quadratic approximation is reasonable. It
may not be:
1. Asymmetric PDF: better to use a confidence interval
2. Multimodal PDF: no clear best estimate; report full PDF

» Frequentists: desire efficient, unbiased, and consistent estimators.
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Next Time

v

Extension of this technique to the multi-dimensional Gaussian and
generalization of the quadratic approximation

Introduction to the method of maximum likelihood

v

Definition of the minimum variance bound

v

v

Method of least squares

v

Uncertainty propagation, or changes of variables in a PDF
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