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Principle of Indifference

Uniform and Jeffreys Priors

I
Principle of Indifference: given n > 1 mutually exclusive and
exhaustive possibilities, each should be assigned a probability equal to
1/n.

I Matches our intuition, and we’ve been applying it throughout the
course. We can also use it to derive PDFs.

I Uniform prior is appropriate for a location parameter:

p(X |I ) = constant =
1

x

max

� x

min

,

I Jeffreys prior is appropriate for a scale parameter:

p(X |I ) = 1
x ln (x

max

/x
min

)

It gives equal probability per decade.
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Principle of Maximum Entropy

I
Principle of Maximum Entropy: the least informative prior is the
one which maximizes

S = �
NX

i=1

p

i

ln (p
i

/m
i

) or S = �
Z

p(x) ln
✓
p(x)

m(x)

◆
dx

I By maximizing S under different constraints we can derive familiar
PDFs using Lagrange multipliers

I Example: given the normalization condition
P

p

i

= 1, a fixed mean µ,
and a fixed variance �2, the maximum entropy distribution is a
Gaussian

I Important result: a Gaussian model of the uncertainties is a safe
choice. Other distributions may give you artificially tight constraints
unless you have appropriate prior information
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Case Study

Reconstructing Air Showers with the HAWC Detector
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Extensive Air Showers

Particle Cascades in the Upper Atmosphere

I Gamma rays and nuclear cosmic
rays interact in the atmosphere

I A particle cascade, or air shower,
of charged particles is produced

I The shower is shaped like a
pancake: a few meters thick and
O(100) meters across

I The “pancake” moves at speed
v ⇡ c to the ground, where the
charged particles can be
detected

I At altitude of Rochester, mostly
muons remain at ground level.
Flux is ⇠ 100 m�2 s�1 sr�1.
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Fitting the Air Shower Plane

Color / timing, circle area / charge.
Two fits: “plane” and “curved” shower.
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Consequence of Incorrect PDFs

In HAWC we make two fits to the
shower front:

1. Planar fit
2. More correct “curved” fit

What happens when we attempt
a maximum likelihood fit with
simulated time residual PDFs? A
worse result than plane fit.

I Why? Timing PDFs are
narrow, but wrong

I Naïve parameterization with
Gaussian uncertainties is
better than correct
parameterization with
incorrect PDFs.

As N

hit

! large, the likelihood fit with
shower curvature should be better than
the plane fit. Instead, it gets worse.
Solution: try to do better with the PDFs.
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Estimators

I We have seen how the PDF encodes what we want to know about a
parameter given data D and relevant background information I .

I An estimator is a summary of this distribution
I

Could be a parameter of the PDF. E.g., p for a binomial distribution

I
Could be a property of the distribution, like the mean

I You have total freedom to make up any estimator you want, but you’ll
want to report two numbers:

1. The best estimate itself

2. A measure of the reliability of the estimate

I Question: what do we mean by “best” estimator?
I Question: what do we mean by the “reliability” of the estimator?
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Bayesian Solution to Parameter Estimation

I If the data D are distributed according to a parameter ✓, the PDF of ✓
can be obtained using Bayes’ Theorem:

p(✓|D, I ) =
p(D|✓, I ) p(✓|I )

p(D|I )
=

p(D|✓, I ) p(✓|I )R
d✓ p(D|✓, I ) p(✓|I )

I The posterior p(✓|D, I ) contains all the relevant information about ✓.
I You can choose to report the entire distribution or provide a summary

of the parameter
I If you’re worried about the effect of priors, publish the likelihood

p(D|✓, I ) and/or show the effect of different priors on p(✓|D, I )
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Frequentist Approach to Parameter Estimation

I Remember that frequentists don’t use p(✓|D, I ); only p(D|✓, I ).
I In other words, there is not really a concept of ✓ varying. Instead, ✓

has a fixed, “true” value (albeit unknown)
I Consequence: p(D|✓, I ) = “probability of the data given a fixed ✓”
I So the frequentist answers the question, “How probable is it that we

observed this data D given some value of ✓?”
I Most of frequentist statistics involves calculating p-values, or tail

probabilities of p(D|✓, I ).
I Because they assume a value for ✓, p-values are a little dangerous

when used to make decisions about the likelihood of a parameter or a
model. They can overstate the evidence against your hypothesis about
✓.

I This is one of the reasons that physicists use the 5� rule of
overwhelming evidence when using p-values
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Bayesian vs. Frequentist Interpretations

I
Bayesian: given D, the uncertainties tell us that the true value of the
parameter lies within the ellipse centered on the observation with some
probability

I
Frequentist: given the true value of the parameters, the observation
lies within an error ellipse centered on the true value with some
probability
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What is a Best Estimator?

I Let’s answer the question of what defines a best estimator.
I Intuitive: it should be where the posterior PDF p(x |D, I ) is a

maximum, meaning
dp

dx

����
x̂

= 0

For this to be a maximum, we also require that

d

2

p

dx

2

����
x̂

< 0

I If x̂ gives the best estimator, then how do we define the reliability of
the estimator?

I Look at the behavior of the PDF in a small region around the peak.
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Reliability of an Estimator?

I Let’s look at the Taylor expansion of p about x̂ , or better yet, ln p:

L = ln p = ln p(x |D, I )

I We use the logarithm because p will often be a “peaky” function of x
near x̂ . L varies more slowly and is a monotonic function of p.

I Taylor expanding L about x̂ , we get

L = L(x̂) +
1
2
d

2

L

dx

2

����
x̂

(x � x̂)2 + . . .

I The first term is a constant. The linear term vanishes (we’re at the
maximum). So the quadratic term dominates, and

p(x |D, I ) ⇡ A exp

1
2
d

2

L

dx

2

����
x̂

(x � x̂)2
�
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Reliability of an Estimator?

I Compare the Taylor-expanded posterior PDF

p(x |D, I ) ⇡ A exp

1
2
d

2

L

dx

2

����
x̂

(x � x̂)2
�

to the Gaussian

p(x |µ,�2) =
1p
2⇡�

exp

�(x � µ)2

2�2

�

I We can identify the width of the Gaussian as

� =

✓
�d

2

L

dx

2

����
x̂

◆�1/2

with d

2

L/dx2 < 0 (we’re at the maximum). Hence, we express the
parameter as

x = x̂ ± �,

where x̂ is the best estimate and � is its reliability.
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Accuracy and Precision

Frequentist Aside

I It is useful to think of an estimator in terms of accuracy and precision
I

Accuracy: how close is the estimator to true value? (Systematics)
I

Precision: how clustered is the estimator about a central value?
(Variance/Statistics)
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Consistency and Bias

Caution: Frequentist Concept

I In the context of a sample of N measurements, we say that an
estimator of ✓, called ✓̂, is consistent if

lim
N!1

P(|✓̂ � ✓| > ✏) = 0, 8 ✏ > 0

I.e., ✓̂ converges to ✓ in the large N limit.
I We call an estimator unbiased if the bias b

b(✓) = E (✓̂)� ✓

is zero.
I An estimator can be biased even if it is consistent. If ✓̂ ! ✓ for an

infinite set of measurements in one experiment, it is not necessarily
true that ✓̂ ! ✓ in an infinite set of experiments with a finite number
of measurements.
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Mean Squared Error (or Deviation)

I It is helpful to think of bias as a systematic error which does not
improve with more data

I Another popular measure of the quality of an estimator is the mean
squared error, defined as

d = MSE = E ((✓̂ � ✓)2)

= E ((✓̂ � E (✓̂))2) + (E (✓̂)� ✓)2

= var (✓̂) + b

2

I I.e., the mean squared error (MSE) is the sum of the variance and the
square of the bias.

I Classical interpretation: since the variance is the square of the
uncertainty in the estimator, the MSE is the quadrature sum of
statistical and systematic uncertainties.

I Root mean square (RMS) is defined as
p

MSE.
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What Makes a Good Estimator

Frequentist Aside
Let’s define the three properties we expect from a good estimator.

1. Consistent: a consistent estimator will tend to the true value as the
amount of data approaches infinity:

lim
N!1

✓̂ = ✓

2. Unbiased: the expectation value of the estimator is equal to the true
value, so its bias b vanishes:

b = h✓̂i � ✓ =

Z
dx p(x |✓) ✓̂(x)� ✓ = 0

3. Efficient: the variance of the estimator is as small as possible (we’ll
see how small when we discuss the method of maximum likelihood):

var (✓̂) =
Z

dx p(x |✓) (✓̂(x)� ✓̂)2

MSE = h(✓̂ � ✓)2i = var (✓̂) + b

2

As you have seen, it is not always possible to satisfy all three requirements.
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Case Study: Efficiency Uncertainty

Example

Suppose you use simulation to determine a selection efficiency: n out of N
events pass some cuts. What is the selection efficiency ✏ and its
uncertainty?
This is a binomial process: fixed trials N, fixed successes n, probability of
success ✏. Therefore,

p(n|N, ✏) / ✏n(1 � ✏)N�n

and

L = ln p = constant + n ln ✏+ (N � n) ln (1 � ✏)

dL

d✏
=

n

✏
� N � n

1 � ✏
d

2

L

d✏2
= � n

✏2
� N � n

(1 � ✏)2
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Case Study: Efficiency Uncertainty

Example

For the optimal value of ✏, dL/d✏ = 0:

dL

d✏

����
✏̂

=
n

✏̂
� N � n

1 � ✏̂

) ✏̂ =
n

N

This is a pretty intuitive result: the best estimate of the efficiency is just
n/N. Mixing in a frequentist concept: is it biased?

b = E (✏̂)� ✏ =
E (n)

N

� ✏ =
N✏

N

� ✏ = 0

So ✏̂ is an unbiased estimator.
What about its uncertainty?
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Case Study: Efficiency Uncertainty

Example

The estimated variance is given by

�̂2 = �
✓
d

2

L

d✏2

����
✏̂

◆�1

After substituting ✏̂ = n/N and combining terms, this reduces to

d

2

L

d✏2

����
✏̂

= � N

✏̂(1 � ✏̂)

) �̂2 =
✏̂(1 � ✏̂)

N

=
n(N � n)

N

3

The expectation of �̂2 is, after some more algebra,

E (�̂2) =
N + 1
N

�2 (slight bias)
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Asymmetric PDFs

I What happens when we have a very asymmetric PDF? In this case the
expansion about the maximum may not be so reasonable.

I This is where the concept of confidence intervals (or “credible regions”
for a Bayesian) come in. We define

p(x
1

 x < x

2

|D, I ) =

Z
x2

x1

p(x |D, I ) dx ⇡ ↵,

where ↵ = 0.68 (for example), and identify x

1

and x

2

.
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Multimodal PDFs

I What happens when we the PDF is multimodal? Can we even
describe a “best parameter” and its uncertainty properly?

I You could try to summarize the posterior using � 2 best estimates and
their error bars, or some kind of disjoint confidence interval.

I Alternatively: cut your losses and just report the full posterior PDF.
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Gaussian Uncertainties

I Suppose we are measuring values x = {x
i

} drawn from a Gaussian
distribution of mean µ and variance �2.

I For today, assume �2 is known but µ is not. How do we estimate µ
given the data?

I Starting from Bayes’ Theorem,

p(µ|x ,�2, I ) / p(x |µ,�2, I ) p(µ|�2, I )

I
Likelihood: If the measurements x

i

are independent, then

p(x |µ,�2, I ) =
NY

i=1

p(x
i

|µ,�2, I ) =
1

(2⇡�2)N/2
exp

 
�
X

i

(x
i

� µ)2

2�2

!

I
Prior: µ is a location parameter, so we’ll use a uniform prior

p(µ|�2, I ) =
1

µ
max

� µ
min

which vanishes outside x 2 [µ
min

, µ
max

].
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Gaussian Uncertainties

Estimate of the Mean

I As in the earlier examples, let’s maximize the logarithm of the
posterior PDF to get the best estimate for µ:

L = ln p(µ|x ,�2, I = constant �
NX

i=1

(x
i

� µ)2

2�2

I Differentiating, we have

dL

dµ

����
µ̂

=
NX

i=1

x

i

� µ

�2

= 0

) µ̂ =
1
N

NX

i=1

x

i

.

So the best estimate of µ is the arithmetic mean of the measurements,
independent of the spread given by �.
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Gaussian Uncertainties

Uncertainty of the Mean

I We estimate uncertainty of the mean using the second derivative, as
before:

d

2

L

dµ2

����
µ̂

= �
NX

i=1

1
�2

= � N

�2

I Therefore, our best estimate and uncertainty on the mean is
summarized by

µ = µ̂± �p
N

I We have recovered the familiar expression often referred to as the
“error on the mean,” and derived the familiar rule that uncertainties
decrease with measurement as 1/

p
N.

I The only requirement is the validity of the quadratic expansion of the
posterior PDF, which is exactly true for the Gaussian.

I This rule applies often in the lab thanks to the tendency of additive
sources of noise to look Gaussian (Central Limit Theorem)
Segev BenZvi (UR) PHY 403 28 / 33



Different-Sized Error Bars

I What happens if the uncertainties in each x

i

differ? As long as the
source of uncertainties is Gaussian, then

p(x |µ,�2

i

, I ) =
NY

i=1

p(x
i

|µ,�2

i

, I ) =
1p

2⇡|⌃|
exp

 
�
X

i

(x
i

� µ)2

2�2

i

!

where ⌃ is the diagonal covariance matrix of the {x
i

}.
I Taking the logarithm and differentiating gives

L = ln p = constant �
NX

i=1

(x
i

� µ)2

2�2

i

dL

dµ

����
µ̂

=
NX

i=0

x

i

� µ

�2

i

= 0

) µ̂ =
NX

i=1

x

i

/�2

i

,
NX

i=1

1/�2

i

=
NX

i=1

x

i

w

i

,
NX

i=1

w

i
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Different-Sized Error Bars

I For the uncertainty on the mean, we have

d

2

L

dµ2

����
µ̂

= �
NX

i=0

1
�2

i

) µ = µ̂±
 

NX

i=1

w

i

!�1/2

, w

i

= 1/�2

i

I So for the case of different uncertainties on each measurement x
i

, the
best estimator of the mean is the arithmetic sum of the data inversely
weighted by the uncertainties.

I This makes a lot of sense; we want the data points with the biggest
uncertainties to contribute the least to the sum
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Summary

I We can identify the best estimator of a PDF by maximizing it, so that

dp

dx

����
x̂

= 0

I We assessed the reliability of the estimator by Taylor expanding
L = ln p about the best value:

�̂2 =

✓
�d

2

L

dx

2

����
x̂

◆�1

I This only works when the quadratic approximation is reasonable. It
may not be:

1. Asymmetric PDF: better to use a confidence interval

2. Multimodal PDF: no clear best estimate; report full PDF

I Frequentists: desire efficient, unbiased, and consistent estimators.
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Next Time

I Extension of this technique to the multi-dimensional Gaussian and
generalization of the quadratic approximation

I Introduction to the method of maximum likelihood
I Definition of the minimum variance bound
I Method of least squares
I Uncertainty propagation, or changes of variables in a PDF
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