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Method of Steepest Descent

I How do we automatically minimize a
multivariable function f (x), or maximize
−f (x)?

I Steepest Descent: given a point a, f (x)
decreases fastest in the direction

−∇f (a)

I Start with a guess x0 and update:

xn+1 = xn − γn∇f (xn), n ≥ 0

I Control the step size with γn
I Keep iterating until (hopefully) xn

converges to a local minimum
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Newton’s Method

I A much faster iterative scheme for
approaching a minimum:

xn+1 = xn − [H(xn)]−1∇f (xn), n ≥ 0

I Intuition: each iteration approximates
f (x) by a quadratic function and takes
a step toward the minimum of the
function

I If f (x) is quadratic, the extremum will
be found in exactly one step

I When the quadratic approximation is
reasonable, this method will converge to
the minimum much faster than the
steepest descent algorithm
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Downhill Simplex (Nelder-Mead) Algorithm

I Multidimensional simplex contains the
minimum

I Pick out the point where f (x) is largest
I Reflect this point through the opposite face

of the simplex to a lower point
I Shrink or expand the simplex to conserve its

volume
I The simplex will crawl, amoeba-like, toward

the minimum
I Advantage: no need to calculate the

gradient. Use result as a starting point for
Newton’s method

I Disadvantage: convergence issues if initial
simplex is too small
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Simulated Annealing
I Starting from xn, randomly generate a new point

xn+1 = xn + ∆x

I Calculate a probability

p = exp
{
− f (xn+1)− f (xn)

kT

}
= exp

{
−∆f

kT

}
for keeping the point, and generate a random number u ∈ [0, 1]. If
u < p, move to xn+1. Otherwise, stay at xn.

I For large T , the probability of accepting new points (even “bad”
moves) is high. For small T , the probability to accept new points is
low

I Idea: start with a high T to help you jump out of local minima, then
slowly reduce the temperature. Slow cooling helps you find the global
minimum energy state, like annealing a piece of metal [1]
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Maximum Likelihood Technique

I The method of maximum likelihood is an extremely important
technique used in frequentist statistics

I There is no mystery to it. Here is the connection to the Bayesian
view: given parameters x and data D, Bayes’ Theorem tells us that

p(x |D, I ) ∝ p(D|x , I ) p(x |I )

where we ignore the marginal evidence p(D|I )
I Suppose p(x |I ) = constant for all x . Then

p(x |D, I ) ∝ p(D|x , I )

and the best estimator x̂ is simply the value that maximizes the
likelihood p(D|x , I )

I So the method of maximum likelihood for a frequentist is equivalent
to maximizing the posterior p(x |D, I ) with uniform priors on the {xi}.
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Frequentist Notation
Maximum Likelihood Estimators

I Just to avoid confusion: in Cowan’s book, the likelihood is written
using the notation

L(x |θ)

where x are the data and θ are the parameters
I Don’t get thrown off. This is still equivalent to a Bayesian likelihood:

p(θ|x , I ) =
L(x |θ) p(θ)∫

dθ′ L(x |θ′) p(θ′)

I I don’t love the notation because it obscures the fact that L is a PDF,
which we use to get best estimators with the tricks introduced in
earlier classes. When needed, we’ll denote it as L because L is used in
Sivia for the logarithm of the posterior PDF

I In everyday applications, you will maximize lnL, or minimize − lnL
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ML Estimator: Exponential PDF

Example
Consider N data points distributed according to the exponential PDF
p(t|τ) = e−t/τ/τ . The log-likelihood function is

ln p(Di |τ) = lnL = −
N∑
i=1

(
ln τ +

ti
τ

)
Maximizing with respect to τ gives

∂ lnL
∂τ

∣∣∣∣
τ̂

= 0 =⇒ τ̂ =
1
N

N∑
i=1

ti

It’s also easy to show that

E (τ̂) = τ =⇒ τ̂ is unbiased

Segev BenZvi (UR) PHY 403 10 / 37



Properties of ML Estimators

I ML estimators are usually consistent (θ̂ → θ)
I ML estimators are usually biased (b = E (θ̂)− θ 6= 0)
I ML estimators are invariant under parameter transformations:

f̂ (θ) = f (θ̂)

Example
Working with λ = 1/τ in the exponential distribution, it’s easy to show
that λ̂ = 1/τ̂ [2].

I Due to sum of terms in lnL, it tends toward a Gaussian by the Central
Limit Theorem, so

σ2
θ̂

=

(
−∂

2 lnL
∂θ2

∣∣∣∣
θ̂

)−1
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Minimum Variance Bound
Rao-Cramér-Frechet Inequality

Given L you can also put a lower bound on the variance of a ML estimator:

var (θ̂) ≥
(
1 +

∂b

∂θ

)2
/

E
[
−∂

2 lnL
∂θ2

]

Example
For the exponential distribution,

∂2L
∂τ2

∣∣∣∣
τ̂

=
N

τ2

(
1− 2τ̂

τ

)
, b = 0,

and so we can prove that τ̂ is efficient (variance is at the lower bound):

var (τ̂) ≥ E
(
−N

τ2 (1− 2τ̂ /τ)

)−1

=

(
−N

τ2 (1− 2 E (τ̂)/τ)

)−1

=
τ2

N
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Variance of ML Estimators

I We can express the variance of ML estimators using the same tricks we
applied to the posterior PDF: expand lnL in a Taylor series about θ̂:

lnL(θ) ≈ lnLmax −
(θ − θ̂)2

2σ2
θ̂

∴ lnL(θ̂ ± σθ̂) = lnLmax −
1
2

I In other words, a change in θ by one standard deviation from θ̂ leads
to a decrease in lnL by 1/2 from its maximum value

I The definition ∆ lnL = 1/2 is often taken as the definition of
statistical uncertainty on a parameter

I Strictly speaking this is only correct in the Gaussian limit, but it can
often be a nice, reasonably accurate shortcut

Segev BenZvi (UR) PHY 403 13 / 37



Variance of ML Estimators
Realization of Exponential Data

Example
Generating 50 {ti} according to an exponential distribution with τ = 1:

Using the criterion ∆ lnL = 0.5 we find τ̂ = 0.96+0.15
−0.12
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Variance of ML Estimators
More Data

Adding more data narrows the distribution of L, as you would expect for
any PDF

The distribution also becomes more symmetric, which you would expect
from the Central Limit Theorem

Segev BenZvi (UR) PHY 403 15 / 37



Asymmetric Uncertainties
I Because lnL becomes increasingly parabolic with N due to the

Central Limit Theorem, we can define rules of thumb for estimating
variances on parameters:

lnL(θ) ≈ lnLmax −
(θ − θ̂)2

2σ2
θ̂

.

Range ∆ lnL
1σ 1/2 · (1)2 = 0.5
2σ 1/2 · (2)2 = 2
3σ 1/2 · (3)2 = 4.5

I This is done even when the likelihood isn’t parabolic, producing
asymmetric error bars (as we saw)

I Justification: you can reparameterize θ such that lnL is parabolic,
which is OK because of the invariance of the ML estimator under
transformations
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Other Approaches to Calculate Variance

I You could use L to estimate a central confidence interval on θ̂: find
the 16th and 84th percentiles

I Monte Carlo Method: generate many random realizations of the data,
maximize lnL for each, and study the distribution of θ̂:

I From 10,000 realizations of the exponential data set, the distribution
of ML estimators τ̂ gives τ̂ = 0.99+0.15

−0.13. Not bad...
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ML Technique with > 1 Parameter

I For > 1 parameter:

cov (xi , xj) =(
−∂

2 lnL
∂xi∂xj

∣∣∣∣
x̂i ,x̂j

)−1

I Use the ∆ lnL trick
to get contours for
1σ, 2σ, etc.

I Project ellipse onto
each axis (i.e.,
marginalize) to get
uncertainties in each
parameter
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ML Technique: Joint Confidence Intervals

Usually we want to calculate a joint likelihood on several parameters but
only produce confidence intervals for individual parameters. However, if we
want confidence ellipses in several parameters jointly, we need to change
the ∆ lnL rule a bit:

joint parameters
Range p 1 2 3 4 5 6
1σ 68.3% 0.50 1.15 1.76 2.36 2.95 3.52
2σ 95.4% 2.00 3.09 4.01 4.85 5.65 6.4
3σ 99.7% 4.50 5.90 7.10 8.15 9.10 10.05

It’s not very common to calculate things this way; usually we are interested
in the marginal distributions of individual parameters. For more details on
this, see [3].
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Connection to χ2

I Suppose our data D are identical independent measurements with
Gaussian uncertainties. Then the likelihood is

p(Di |x , I ) =
1√
2πσi

exp
[
−(Fi − Di )

2

2σ2
i

]
, p(D|x , I ) =

N∏
i=1

p(Di |x , I ),

where we defined the functional relationship between x and the ideal
(noiseless) data F as

Fi = f (x , i)

I If we define χ2 as the sum of the squares of the normalized residuals
(Fi − Di )/σi , then

χ2 =
N∑
i=1

(Fi − Di )
2

σ2
i

=⇒ p(D|x , I ) ∝ exp
(
−χ

2

2

)

Segev BenZvi (UR) PHY 403 21 / 37



Maximum Likelihood and Least Squares

I With a uniform prior on x , the logarithm of the posterior PDF is

L = ln p(x |D, I ) = ln p(D|x , I ) = constant− χ2

2

I The maximum of the posterior (and likelihood) will occur when χ2 is a
minimum. Hence, the optimal solution x̂ is called the least squares
estimate

I Least squares/maximum likelihood is used all the time in data
analysis, but...

I Note: there is nothing mysterious or even fundamental about this;
least squares is what Bayes’ Theorem reduces to if:

1. Your prior on your parameters is uniform
2. The uncertainties on your data are Gaussian
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Maximum Likelihood: Poisson Case
I Suppose that our data aren’t Gaussian, but a set of Poisson counts n

with expectation values ν. E.g., we are dealing with binned data in a
histogram. Then the likelihood becomes

p(n|ν, I ) =
N∏
i=1

νnii e−νi

ni !

I In the limit N → large, this becomes

p(ni |νi , I ) ∝ exp

[
−

N∑
i=1

(ni − νi )2

2νi

]

I The corresponding χ2 statistic is given by

χ2 =
N∑
i=1

(ni − νi )2

νi
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Pearson’s χ2 Test

I The quantity

χ2 =
N∑
i=1

(ni − νi )2

νi

is also known as Pearson’s χ2 statistic
I Pearson’s χ2 test is a standard frequentist method for comparing

histogrammed counts {ni} against a theoretical expectation {νi}
I Convenient property: this test statistic will be asymptotically

distributed like χ2
N regardless of the actual distribution that generates

the relative counts {ni}. It is distribution free
I In practice, we can use Pearson’s χ2 to calculate a p-value

p(χ2
Pearson ≥ χ2|N)

I Caveat: the counts in each bin must not be too small; ni ≥ 5 for all i
is a reasonable rule of thumb
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Modified Least Squares
I Sometimes you will encounter a χ2

statistic for binned data defined like this:

χ2 =
N∑
i=1

(ni − fi )
2

ni

I The variance is no longer the expected
counts (as expected in a Poisson
distribution) but the observed counts ni .
This is called modified least squares

I You don’t really want this, unless you
made mistakes counting ni

I But, statistics packages may use this
statistic when fitting functions to binned
data
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Robustness of Least Squares Algorithm

I Our definition of χ2 as the quadrature sum (or l2-norm) of the
residuals makes a lot of calculations easy, but it isn’t particularly
robust. I.e., it can be affected by outliers

I Note: the l1-norm

l1-norm =
N∑
i=1

∣∣∣∣Fi − Di

σi

∣∣∣∣
is much more robust against outliers in the data

I This isn’t used too often but if your function f (x) is linear in the
parameters it’s not hard to calculate

I See chapter 15 of Numerical Recipes in C for an implementation [3]
I In Python there should be an implementation in the statsmodels

package [4]
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Application: Fitting a Straight Line to Data

Example
Suppose we have N measurements yi with Gaussian uncertainties σi
measured at positions xi .

Given the straight line model yi = mxi + b, what are the best estimators of
the parameters m and b?
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Minimize the χ2

Letting Fi = mxi + b and Di = yi , the χ2 is

χ2 =
N∑
i=1

(mxi + b − yi )2
σ2
i

Minimizing χ2 as a function of the parameters gives

∂χ2

∂m
=

N∑
i=1

2(mxi + b − yi )xi
σ2
i

and
∂χ2

∂b
=

N∑
i=1

2(mxi + b − yi )

σ2
i

Defining wi = 2/σ2
i and rewriting this as a matrix equation,

∇χ2 =

(
A C
C B

)(
m
b

)
−
(
p
q

)
= 0

A =
∑

x2
i wi , B =

∑
wi , C =

∑
xiwi , p =

∑
xiyiwi , q =

∑
yiwi
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Best Estimators of a Linear Function

I Inverting the matrix, we find that

m̂ =
Bp − Cq

AB − C 2 and b̂ =
Aq − Cp

AB − C 2

I The covariance matrix is found by evaluating [2∇∇χ2]−1:(
σ2
m σ2

mb

σ2
mb σ2

b

)
= 2

(
A C
C B

)−1

=
2

AB − C 2

(
B −C
−C A

)
I We note that even though the data {yi} are independent, the

parameters m̂ and b̂ end up anticorrelated due to the off-diagonal
terms in the covariance matrix

I This makes a lot of sense, actually; wiggling the slope of the line m
clearly changes the y -intercept b
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LS Uncertainties
Example LS fit: best estimators m̂ = 2.66± 0.10, b̂ = 2.05± 0.51,
cov (m, b) = −0.10 =⇒ ρ = −0.94, quite anti-correlated

We calculated the covariance matrix analytically, but note that we could
have used a fitter with a quadratic approximation, or noted that

∆χ2 = −2∆ lnL
∴ ∆χ2 = 1 from minimum =⇒ 1σ contour

Segev BenZvi (UR) PHY 403 30 / 37



Generalization: Correlated Uncertainties in Data
I So far we have been focusing on the case where uncertainties in our

measurements are completely uncorrelated
I If this is not the case, then we can generalize χ2 to

χ2 =
(
y − ŷ

)>
Σ−1 (y − ŷ

)
where Σ is the covariance matrix of the data

I If the fit function depends linearly on the parameters,

y(x) =
m∑
i=1

ai fi (x), ŷ = A · a, Aij = fj(xi )

then

χ2 =
(
y − ŷ

)>
Σ−1 (y − ŷ

)
=
(
y − A · a

)>
Σ−1 (y − A · a

)
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Exact Solution to Linear Least Squares

I This is the case of linear least squares; the LS estimators of the {ai}
are unbiased, efficient, and can be solved analytically

I The general solution:

χ2 =
(
y − A · a

)>
Σ−1 (y − A · a

)
a = (A>Σ−1A)−1A>Σ−1 · y

cov (âi , âj) = (A>Σ−1A)−1

I In practice one still minimizes numerically, because the matrix
inversions in the analytical solution can be computationally expensive
and numerically unstable

I Nice property: if uncertainties are Gaussian and the fit function is
linear in the m parameters, then χ2 ∼ χ2

N−m. But often these
assumptions are broken, e.g., when using binned data with low counts
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Nonlinear Least Squares

I If y(x) is nonlinear in the parameters, we
can try to approximate χ2 as quadratic and
use Newton’s Method:

an+1 = an − [H(an)]−1∇χ2(an)

I But, this could be a poor approximation to
the function, so we could also try to use
steepest descent:

an+1 = an − γn∇χ2(an)

I Levenberg-Marquardt Algorithm: use
steepest descent far from the minimum,
then switch to using the Hessian [3]. Basis
of scipy.optimize.curve_fit

Segev BenZvi (UR) PHY 403 33 / 37



χ2 and Goodness of Fit

I Because χ2 ∼ χ2
N−m if several conditions are satisfied, it can be used

to estimate the goodness of fit
I Basic idea: the outcome of Linear Least Squares is the value χ2

min.
Goodness of fit comes from calculating the p-value

p(χ2 ≥ χ2
min|N,m)

I This tail probability tells us how unlikely it is to have observed our
data given the model and its best fit parameters

I Recall the warning about p-values: they are biased against the null
hypothesis that the model is correct, and can lead you to spuriously
reject a model

I The 5σ rule applies, because we’re not dealing with a proper posterior
PDF
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ML and Goodness of Fit

I The ML technique does not provide a similar goodness of fit parameter
because there is no standard reference distribution to compare to

I Suggested approach: estimate paramaters with ML, but calculate
goodness of fit by binning the data and using χ2

I Note: be careful about assuming that your χ2 statistic actually
follows a χ2 distribution. Remember that this is true only for linear
models with Gaussian uncertainties

I This isn’t the 1920s. Use simulation to model the distribution of your
χ2 statistic and calculate p-values from that distribution
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Summary

I The maximum likelihood (ML) method and the least squares (LS)
method are very popular techniques for parameter estimation and are
easy to implement

I Generally it’s better to use the ML technique if you have the PDFs of
the measurements. Your estimators will be biased though it’s not an
issue in the large N limit

I If your problem is linear in the parameters and you have Gaussian
uncertainties, you can use LS. Advantage: closed form solutions and a
measure of the goodness of fit

I Uncertainties on estimators:

Error ∆ lnL ∆χ2

1σ 0.5 1
2σ 2 4
3σ 4.5 9
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