Physics 403 Maximum Likelihood and Least Squares II

Segev BenZvi

Department of Physics and Astronomy University of Rochester

Table of Contents

1 Methods of Finding Minima

- Steepest Descent and Newton's Method
- Simplex (Nelder-Mead) Algorithm
- Simulated Annealing
- Maximum Likelihood
 - Properties of ML Estimators
 - Variances and the Minimum Variance Bound
 - Maximum Likelihood in Several Dimensions
- $3\,\,\chi^2$ and the Method of Least Squares
 - Gaussian and Poisson Cases
 - Fitting a Line to Data
 - Generalization to Correlated Uncertainties
 - Nonlinear Least Squares
 - Goodness of Fit

Method of Steepest Descent

- How do we automatically minimize a multivariable function f(x), or maximize -f(x)?
- Steepest Descent: given a point a, f(x) decreases fastest in the direction

 $-\nabla f(\boldsymbol{a})$

• Start with a guess x_0 and update:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla f(\mathbf{x}_n), \ n \ge 0$$

- Control the step size with γ_n
- Keep iterating until (hopefully) x_n converges to a local minimum

Newton's Method

A much faster iterative scheme for approaching a minimum:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - [\mathbf{H}(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n), \quad n \ge 0$$

- Intuition: each iteration approximates
 f(x) by a quadratic function and takes
 a step toward the minimum of the function
- If f(x) is quadratic, the extremum will be found in exactly one step
- When the quadratic approximation is reasonable, this method will converge to the minimum much faster than the steepest descent algorithm

Downhill Simplex (Nelder-Mead) Algorithm

- Multidimensional simplex contains the minimum
- Pick out the point where f(x) is largest
- Reflect this point through the opposite face of the simplex to a lower point
- Shrink or expand the simplex to conserve its volume
- The simplex will crawl, amoeba-like, toward the minimum
- Advantage: no need to calculate the gradient. Use result as a starting point for Newton's method
- Disadvantage: convergence issues if initial simplex is too small

Simulated Annealing

• Starting from x_n , randomly generate a new point

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \Delta \mathbf{x}$$

Calculate a probability

$$p = \exp\left\{-\frac{f(\mathbf{x}_{n+1}) - f(\mathbf{x}_n)}{kT}\right\} = \exp\left\{-\frac{\Delta f}{kT}\right\}$$

for keeping the point, and generate a random number $u \in [0, 1]$. If u < p, move to x_{n+1} . Otherwise, stay at x_n .

- For large T, the probability of accepting new points (even "bad" moves) is high. For small T, the probability to accept new points is low
- Idea: start with a high T to help you jump out of local minima, then slowly reduce the temperature. Slow cooling helps you find the global minimum energy state, like annealing a piece of metal [1]

Table of Contents

Methods of Finding Minima

- Steepest Descent and Newton's Method
- Simplex (Nelder-Mead) Algorithm
- Simulated Annealing
- Maximum Likelihood
 - Properties of ML Estimators
 - Variances and the Minimum Variance Bound
 - Maximum Likelihood in Several Dimensions
- $\mathfrak{3}\,\,\chi^2$ and the Method of Least Squares
 - Gaussian and Poisson Cases
 - Fitting a Line to Data
 - Generalization to Correlated Uncertainties
 - Nonlinear Least Squares
 - Goodness of Fit

Maximum Likelihood Technique

- The method of maximum likelihood is an extremely important technique used in frequentist statistics
- There is no mystery to it. Here is the connection to the Bayesian view: given parameters x and data D, Bayes' Theorem tells us that

$$p(\boldsymbol{x}|\boldsymbol{D},l) \propto p(\boldsymbol{D}|\boldsymbol{x},l) \ p(\boldsymbol{x}|l)$$

where we ignore the marginal evidence p(D|I)

Suppose $p(\mathbf{x}|I) = \text{constant for all } \mathbf{x}$. Then

 $p(\boldsymbol{x}|\boldsymbol{D}, l) \propto p(\boldsymbol{D}|\boldsymbol{x}, l)$

and the best estimator \hat{x} is simply the value that maximizes the likelihood p(D|x, l)

So the method of maximum likelihood for a frequentist is equivalent to maximizing the posterior p(x|D, l) with uniform priors on the {x_i}.

・ロト ・四ト ・ヨト ・ヨト

Frequentist Notation

Maximum Likelihood Estimators

 Just to avoid confusion: in Cowan's book, the likelihood is written using the notation

$$\mathcal{L}(\pmb{x}|\pmb{ heta})$$

where \boldsymbol{x} are the data and $\boldsymbol{\theta}$ are the parameters

> Don't get thrown off. This is still equivalent to a Bayesian likelihood:

$$p(\theta|\mathbf{x}, I) = \frac{\mathcal{L}(\mathbf{x}|\theta) \ p(\theta)}{\int d\theta' \ \mathcal{L}(\mathbf{x}|\theta') \ p(\theta')}$$

- I don't love the notation because it obscures the fact that L is a PDF, which we use to get best estimators with the tricks introduced in earlier classes. When needed, we'll denote it as L because L is used in Sivia for the logarithm of the posterior PDF
- ► In everyday applications, you will maximize $\ln \mathcal{L}$, or minimize $-\ln \mathcal{L}$

ML Estimator: Exponential PDF

Example

Consider N data points distributed according to the exponential PDF $p(t|\tau) = e^{-t/\tau}/\tau$. The log-likelihood function is

$$\ln p(D_i|\tau) = \ln \mathcal{L} = -\sum_{i=1}^N \left(\ln \tau + \frac{t_i}{\tau} \right)$$

Maximizing with respect to τ gives

$$\frac{\partial \ln \mathcal{L}}{\partial \tau}\Big|_{\hat{\tau}} = 0 \implies \hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} t_i$$

It's also easy to show that

$$\mathsf{E}\left(\hat{ au}
ight)= au\implies\hat{ au}$$
 is unbiased

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Properties of ML Estimators

- ML estimators are usually consistent $(\hat{ heta} o heta)$
- ML estimators are usually biased $(b = E(\hat{\theta}) \theta \neq 0)$
- ML estimators are invariant under parameter transformations:

$$\widehat{f(\theta)} = f(\hat{\theta})$$

Example

Working with $\lambda=1/\tau$ in the exponential distribution, it's easy to show that $\hat{\lambda}=1/\hat{\tau}$ [2].

Due to sum of terms in In L, it tends toward a Gaussian by the Central Limit Theorem, so

$$\sigma_{\hat{\theta}}^2 = \left(-\frac{\partial^2 \ln \mathcal{L}}{\partial \theta^2} \bigg|_{\hat{\theta}} \right)^{-1}$$

Minimum Variance Bound

Rao-Cramér-Frechet Inequality

Given $\mathcal L$ you can also put a lower bound on the variance of a ML estimator:

$$\operatorname{var}\left(\hat{ heta}
ight) \geq \left. \left(1 + rac{\partial b}{\partial heta}
ight)^2 \right/ \mathsf{E}\left[-rac{\partial^2 \ln \mathcal{L}}{\partial heta^2}
ight]$$

Example

For the exponential distribution,

$$\left. rac{\partial^2 \mathcal{L}}{\partial au^2} \right|_{\hat{ au}} = rac{N}{ au^2} \left(1 - rac{2\hat{ au}}{ au}
ight), \quad b = 0,$$

and so we can prove that $\hat{\tau}$ is efficient (variance is at the lower bound):

$$\operatorname{var}(\hat{\tau}) \ge \mathsf{E}\left(-\frac{N}{\tau^2}(1 - 2\hat{\tau}/\tau)\right)^{-1} = \left(-\frac{N}{\tau^2}(1 - 2\,\mathsf{E}\,(\hat{\tau})/\tau)\right)^{-1} = \frac{\tau^2}{N}$$

Variance of ML Estimators

We can express the variance of ML estimators using the same tricks we applied to the posterior PDF: expand ln L in a Taylor series about θ̂:

$$\ln \mathcal{L}(\theta) \approx \ln \mathcal{L}_{\max} - rac{(heta - \hat{ heta})^2}{2\sigma_{\hat{ heta}}^2}$$

 $\therefore \ln \mathcal{L}(\hat{ heta} \pm \sigma_{\hat{ heta}}) = \ln \mathcal{L}_{\max} - rac{1}{2}$

- In other words, a change in θ by one standard deviation from θ̂ leads to a decrease in ln L by 1/2 from its maximum value
- ► The definition ∆ ln L = 1/2 is often taken as the definition of statistical uncertainty on a parameter
- Strictly speaking this is only correct in the Gaussian limit, but it can often be a nice, reasonably accurate shortcut

・ 何 ト ・ ヨ ト ・ ヨ ト …

Variance of ML Estimators

Realization of Exponential Data

Example

Generating 50 $\{t_i\}$ according to an exponential distribution with $\tau = 1$:

Using the criterion $\Delta \ln \mathcal{L} = 0.5$ we find $\hat{\tau} = 0.96^{+0.15}_{-0.12}$

Segev BenZvi (UR)

Variance of ML Estimators

More Data

Adding more data narrows the distribution of $\boldsymbol{\mathcal{L}},$ as you would expect for any PDF

The distribution also becomes more symmetric, which you would expect from the Central Limit Theorem

Segev BenZvi (UR)

Asymmetric Uncertainties

Because ln *L* becomes increasingly parabolic with *N* due to the Central Limit Theorem, we can define rules of thumb for estimating variances on parameters:

$$\ln \mathcal{L}(heta) pprox \ln \mathcal{L}_{\mathsf{max}} - rac{(heta - \hat{ heta})^2}{2\sigma_{\hat{ heta}}^2}.$$

Range	$\Delta \ln \mathcal{L}$
1σ	$1/2 \cdot (1)^2 = 0.5$
2σ	$1/2 \cdot (2)^2 = 2$
3σ	$1/2 \cdot (3)^2 = 4.5$

- This is done even when the likelihood isn't parabolic, producing asymmetric error bars (as we saw)
- Justification: you can reparameterize θ such that In L is parabolic, which is OK because of the invariance of the ML estimator under transformations

Segev BenZvi (UR)

Other Approaches to Calculate Variance

- You could use L to estimate a central confidence interval on
 \u03c6: find the 16th and 84th percentiles
- Monte Carlo Method: generate many random realizations of the data, maximize ln *L* for each, and study the distribution of *θ*:

ML Technique with > 1 Parameter

► For > 1 parameter:

$$egin{split} \mathsf{cov}\left(x_{i},x_{j}
ight) = \ \left(-rac{\partial^{2}\ln\mathcal{L}}{\partial x_{i}\partial x_{j}}\Big|_{\hat{x}_{i},\hat{x}_{j}}
ight)^{-1} \end{split}$$

- Use the Δ ln L trick to get contours for 1σ, 2σ, etc.
- Project ellipse onto each axis (i.e., marginalize) to get uncertainties in each parameter

ML Technique: Joint Confidence Intervals

Usually we want to calculate a joint likelihood on several parameters but only produce confidence intervals for individual parameters. However, if we want confidence ellipses in several parameters jointly, we need to change the $\Delta \ln \mathcal{L}$ rule a bit:

		joint parameters					
Range	p	1	2	3	4	5	6
1σ	68.3%	0.50	1.15	1.76	2.36	2.95	3.52
2σ	95.4%	2.00	3.09	4.01	4.85	5.65	6.4
3σ	99.7%	4.50	5.90	7.10	8.15	9.10	10.05

It's not very common to calculate things this way; usually we are interested in the marginal distributions of individual parameters. For more details on this, see [3].

イロト イポト イヨト イヨト

Table of Contents

- Methods of Finding Minima
 - Steepest Descent and Newton's Method
 - Simplex (Nelder-Mead) Algorithm
 - Simulated Annealing
 - Maximum Likelihood
 - Properties of ML Estimators
 - Variances and the Minimum Variance Bound
 - Maximum Likelihood in Several Dimensions
- (3) χ^2 and the Method of Least Squares
 - Gaussian and Poisson Cases
 - Fitting a Line to Data
 - Generalization to Correlated Uncertainties
 - Nonlinear Least Squares
 - Goodness of Fit

Connection to χ^2

Suppose our data *D* are identical independent measurements with Gaussian uncertainties. Then the likelihood is

$$p(D_i|\mathbf{x}, I) = \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left[-\frac{(F_i - D_i)^2}{2\sigma_i^2}\right], \quad p(\mathbf{D}|\mathbf{x}, I) = \prod_{i=1}^N p(D_i|\mathbf{x}, I),$$

where we defined the functional relationship between \boldsymbol{x} and the ideal (noiseless) data \boldsymbol{F} as

$$F_i = f(\mathbf{x}, i)$$

• If we define χ^2 as the sum of the squares of the normalized residuals $(F_i - D_i)/\sigma_i$, then

$$\chi^2 = \sum_{i=1}^{N} \frac{(F_i - D_i)^2}{\sigma_i^2} \implies p(\boldsymbol{D}|\boldsymbol{x}, I) \propto \exp\left(-\frac{\chi^2}{2}\right)$$

★個人 ★国人 ★国人

Maximum Likelihood and Least Squares

• With a uniform prior on \boldsymbol{x} , the logarithm of the posterior PDF is

$$L = \ln p(\mathbf{x}|\mathbf{D}, I) = \ln p(\mathbf{D}|\mathbf{x}, I) = \text{constant} - \frac{\chi^2}{2}$$

- The maximum of the posterior (and likelihood) will occur when χ² is a minimum. Hence, the optimal solution x̂ is called the least squares estimate
- Least squares/maximum likelihood is used all the time in data analysis, but...
- Note: there is nothing mysterious or even fundamental about this; least squares is what Bayes' Theorem reduces to if:
 - 1. Your prior on your parameters is uniform
 - 2. The uncertainties on your data are Gaussian

Maximum Likelihood: Poisson Case

Suppose that our data aren't Gaussian, but a set of Poisson counts n with expectation values v. E.g., we are dealing with binned data in a histogram. Then the likelihood becomes

$$p(\boldsymbol{n}|\boldsymbol{\nu}, l) = \prod_{i=1}^{N} \frac{\nu_i^{n_i} e^{-\nu_i}}{n_i!}$$

• In the limit $N \rightarrow$ large, this becomes

$$p(n_i|\nu_i, I) \propto \exp\left[-\sum_{i=1}^N \frac{(n_i - \nu_i)^2}{2\nu_i}
ight]$$

 \blacktriangleright The corresponding χ^2 statistic is given by

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\nu_i}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Pearson's χ^2 Test

The quantity

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\nu_i}$$

is also known as Pearson's χ^2 statistic

- Pearson's χ² test is a standard frequentist method for comparing histogrammed counts {n_i} against a theoretical expectation {ν_i}
- ► Convenient property: this test statistic will be asymptotically distributed like χ^2_N regardless of the actual distribution that generates the relative counts $\{n_i\}$. It is distribution free
- ▶ In practice, we can use Pearson's χ^2 to calculate a *p*-value

$$p(\chi^2_{\text{Pearson}} \ge \chi^2 | N)$$

► Caveat: the counts in each bin must not be too small; n_i ≥ 5 for all i is a reasonable rule of thumb

Modified Least Squares

 Sometimes you will encounter a χ² statistic for binned data defined like this:

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - f_i)^2}{n_i}$$

- The variance is no longer the expected counts (as expected in a Poisson distribution) but the observed counts n_i. This is called modified least squares
- You don't really want this, unless you made mistakes counting n_i
- But, statistics packages may use this statistic when fitting functions to binned data

Robustness of Least Squares Algorithm

- Our definition of χ² as the quadrature sum (or *l*₂-norm) of the residuals makes a lot of calculations easy, but it isn't particularly robust. I.e., it can be affected by outliers
- ► **Note**: the *I*₁-norm

$$I_1$$
-norm = $\sum_{i=1}^{N} \left| \frac{F_i - D_i}{\sigma_i} \right|$

is much more robust against outliers in the data

- This isn't used too often but if your function f(x) is linear in the parameters it's not hard to calculate
- ▶ See chapter 15 of Numerical Recipes in C for an implementation [3]
- In Python there should be an implementation in the statsmodels package [4]

A = A = A

Application: Fitting a Straight Line to Data

Example

Suppose we have N measurements y_i with Gaussian uncertainties σ_i measured at positions x_i .

Given the straight line model $y_i = mx_i + b$, what are the best estimators of the parameters *m* and *b*?

(日) (周) (日) (日)

Minimize the χ^2

Letting $F_i = mx_i + b$ and $D_i = y_i$, the χ^2 is

$$\chi^{2} = \sum_{i=1}^{N} \frac{(mx_{i} + b - y_{i})2}{\sigma_{i}^{2}}$$

Minimizing χ^2 as a function of the parameters gives

$$\frac{\partial \chi^2}{\partial m} = \sum_{i=1}^{N} \frac{2(mx_i + b - y_i)x_i}{\sigma_i^2} \quad \text{and} \quad \frac{\partial \chi^2}{\partial b} = \sum_{i=1}^{N} \frac{2(mx_i + b - y_i)}{\sigma_i^2}$$

Defining $w_i = 2/\sigma_i^2$ and rewriting this as a matrix equation,

$$\nabla \chi^2 = \begin{pmatrix} A & C \\ C & B \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} - \begin{pmatrix} p \\ q \end{pmatrix} = 0$$
$$A = \sum x_i^2 w_i, \ B = \sum w_i, \ C = \sum x_i w_i, \ p = \sum x_i y_i w_i, \ q = \sum y_i w_i$$

イロト イポト イヨト イヨト 三日

Best Estimators of a Linear Function

Inverting the matrix, we find that

$$\hat{m} = rac{Bp-Cq}{AB-C^2}$$
 and $\hat{b} = rac{Aq-Cp}{AB-C^2}$

• The covariance matrix is found by evaluating $[2\nabla \nabla \chi^2]^{-1}$:

$$\begin{pmatrix} \sigma_m^2 & \sigma_{mb}^2 \\ \sigma_{mb}^2 & \sigma_b^2 \end{pmatrix} = 2 \begin{pmatrix} A & C \\ C & B \end{pmatrix}^{-1} = \frac{2}{AB - C^2} \begin{pmatrix} B & -C \\ -C & A \end{pmatrix}$$

- ► We note that even though the data {y_i} are independent, the parameters m̂ and b̂ end up anticorrelated due to the off-diagonal terms in the covariance matrix
- This makes a lot of sense, actually; wiggling the slope of the line m clearly changes the y-intercept b

LS Uncertainties

Example LS fit: best estimators $\hat{m} = 2.66 \pm 0.10$, $\hat{b} = 2.05 \pm 0.51$, cov $(m, b) = -0.10 \implies \rho = -0.94$, quite anti-correlated

We calculated the covariance matrix analytically, but note that we could have used a fitter with a quadratic approximation, or noted that

$$\Delta \chi^2 = -2\Delta \ln \mathcal{L}$$

$$\Delta \chi^2 = 1$$
 from minimum $\implies 1\sigma$ contour

Generalization: Correlated Uncertainties in Data

- So far we have been focusing on the case where uncertainties in our measurements are completely uncorrelated
- \blacktriangleright If this is not the case, then we can generalize χ^2 to

$$\chi^2 = \left(\boldsymbol{y} - \hat{\boldsymbol{y}} \right)^\top \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{y} - \hat{\boldsymbol{y}} \right)$$

where Σ is the covariance matrix of the data

If the fit function depends linearly on the parameters,

$$y(x) = \sum_{i=1}^{m} a_i f_i(x), \qquad \hat{y} = \boldsymbol{A} \cdot \boldsymbol{a}, \qquad A_{ij} = f_j(x_i)$$

then

$$egin{aligned} \chi^2 &= \left(oldsymbol{y} - \hat{oldsymbol{y}}
ight)^{ op} oldsymbol{\Sigma}^{-1} \left(oldsymbol{y} - \hat{oldsymbol{y}}
ight) \ &= \left(oldsymbol{y} - oldsymbol{A} \cdot oldsymbol{a}
ight)^{ op} oldsymbol{\Sigma}^{-1} \left(oldsymbol{y} - oldsymbol{A} \cdot oldsymbol{a}
ight) \end{aligned}$$

Exact Solution to Linear Least Squares

- ► This is the case of linear least squares; the LS estimators of the {a_i} are unbiased, efficient, and can be solved analytically
- The general solution:

$$\begin{split} \chi^2 &= \left(\boldsymbol{y} - \boldsymbol{A} \cdot \boldsymbol{a} \right)^\top \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{y} - \boldsymbol{A} \cdot \boldsymbol{a} \right) \\ \boldsymbol{a} &= \left(\boldsymbol{A}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{A} \right)^{-1} \boldsymbol{A}^\top \boldsymbol{\Sigma}^{-1} \cdot \boldsymbol{y} \\ \operatorname{cov} \left(\hat{a}_i, \hat{a}_j \right) &= \left(\boldsymbol{A}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{A} \right)^{-1} \end{split}$$

- In practice one still minimizes numerically, because the matrix inversions in the analytical solution can be computationally expensive and numerically unstable
- ► Nice property: if uncertainties are Gaussian and the fit function is linear in the *m* parameters, then χ² ~ χ²_{N-m}. But often these assumptions are broken, e.g., when using binned data with low counts

< □ > < □ > < □ > < □ > < □ > < □ >

Nonlinear Least Squares

If y(x) is nonlinear in the parameters, we can try to approximate χ² as quadratic and use Newton's Method:

$$\boldsymbol{a}_{n+1} = \boldsymbol{a}_n - [\boldsymbol{H}(\boldsymbol{a}_n)]^{-1} \nabla \chi^2(\boldsymbol{a}_n)$$

But, this could be a poor approximation to the function, so we could also try to use steepest descent:

$$\boldsymbol{a}_{n+1} = \boldsymbol{a}_n - \gamma_n \nabla \chi^2(\boldsymbol{a}_n)$$

Levenberg-Marquardt Algorithm: use steepest descent far from the minimum, then switch to using the Hessian [3]. Basis of scipy.optimize.curve_fit

χ^2 and Goodness of Fit

- ► Because \u03c0² ~ \u03c0²_{N-m} if several conditions are satisfied, it can be used to estimate the goodness of fit
- Basic idea: the outcome of Linear Least Squares is the value \(\chi_{min}^2\). Goodness of fit comes from calculating the *p*-value

$$p(\chi^2 \ge \chi^2_{\min}|N,m)$$

- This tail probability tells us how unlikely it is to have observed our data given the model and its best fit parameters
- Recall the warning about *p*-values: they are biased against the null hypothesis that the model is correct, and can lead you to spuriously reject a model
- \blacktriangleright The 5 σ rule applies, because we're not dealing with a proper posterior PDF

ML and Goodness of Fit

- The ML technique does not provide a similar goodness of fit parameter because there is no standard reference distribution to compare to
- Suggested approach: estimate paramaters with ML, but calculate goodness of fit by binning the data and using χ²
- Note: be careful about assuming that your χ² statistic actually follows a χ² distribution. Remember that this is true only for linear models with Gaussian uncertainties
- ▶ This isn't the 1920s. Use simulation to model the distribution of your χ^2 statistic and calculate *p*-values from that distribution

Summary

- The maximum likelihood (ML) method and the least squares (LS) method are very popular techniques for parameter estimation and are easy to implement
- Generally it's better to use the ML technique if you have the PDFs of the measurements. Your estimators will be biased though it's not an issue in the large N limit
- If your problem is linear in the parameters and you have Gaussian uncertainties, you can use LS. Advantage: closed form solutions and a measure of the goodness of fit
- Uncertainties on estimators:

Error	$\Delta \ln \mathcal{L}$	$\Delta \chi^2$
1σ	0.5	1
2σ	2	4
3σ	4.5	9

References I

- S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. "Optimization by Simulated Annealing". In: Science 220.4598 (1983), pp. 671–680.
- [2] Glen Cowan. *Statistical Data Analysis*. New York: Oxford University Press, 1998.
- [3] W. Press et al. Numerical Recipes in C. New York: Cambridge University Press, 1992. URL: http://www.nr.com.
- [4] Statsmodels. URL: http://statsmodels.sourceforge.net/.

A B K A B K