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Method of Steepest Descent

» How do we automatically minimize a
multivariable function f(x), or maximize

—f(x)?
» Steepest Descent: given a point a, f(x)
decreases fastest in the direction

—Vf(a)
» Start with a guess xp and update:
Xp+1 = Xp — Yn VI (xn), n>0

» Control the step size with v,

» Keep iterating until (hopefully) x,
converges to a local minimum
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Newton's Method

A much faster iterative scheme for
approaching a minimum:

v

Xn+1 = Xn — [H(xa)] 7 VF(xn), n>0

» Intuition: each iteration approximates
f(x) by a quadratic function and takes
a step toward the minimum of the
function

» If f(x) is quadratic, the extremum will
be found in exactly one step

» When the quadratic approximation is
reasonable, this method will converge to

0 the minimum much faster than the

steepest descent algorithm
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Downhill Simplex (Nelder-Mead) Algorithm

simplex at beginning of step
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reflection

reflection and expansion

multiple
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4 contraction
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» Multidimensional simplex contains the

minimum

Pick out the point where f(x) is largest
Reflect this point through the opposite face
of the simplex to a lower point

Shrink or expand the simplex to conserve its
volume

The simplex will crawl, amoeba-like, toward
the minimum

Advantage: no need to calculate the
gradient. Use result as a starting point for
Newton's method

Disadvantage: convergence issues if initial
simplex is too small
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Simulated Annealing

» Starting from x,, randomly generate a new point
Xp+1 = Xp + Ax

» Calculate a probability

p=exp {_ f(Xn+1lz7j f(Xn)} — exp {_f_,’_c}

for keeping the point, and generate a random number v € [0, 1]. If
u < p, move to xp11. Otherwise, stay at x,.

» For large T, the probability of accepting new points (even “bad”
moves) is high. For small T, the probability to accept new points is
low

» |dea: start with a high T to help you jump out of local minima, then
slowly reduce the temperature. Slow cooling helps you find the global
minimum energy state, like annealing a piece of metal [1]
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Maximum Likelihood Technique

» The method of maximum likelihood is an extremely important
technique used in frequentist statistics

» There is no mystery to it. Here is the connection to the Bayesian
view: given parameters x and data D, Bayes' Theorem tells us that

p(x|D, 1) o< p(D|x, 1) p(x|I)

where we ignore the marginal evidence p(D|/)

» Suppose p(x|/) = constant for all x. Then
p(x|D. 1) o p(Dlx, 1)

and the best estimator X is simply the value that maximizes the
likelihood p(D|x, 1)

» So the method of maximum likelihood for a frequentist is equivalent
to maximizing the posterior p(x|D, I) with uniform priors on the {x;}.
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Frequentist Notation

Maximum Likelihood Estimators

» Just to avoid confusion: in Cowan’s book, the likelihood is written
using the notation

L(x|0)
where x are the data and 6 are the parameters

» Don't get thrown off. This is still equivalent to a Bayesian likelihood:

£(x10) p(6)
[ de L(x[6") p(6")

p(O]x,1) =

» | don't love the notation because it obscures the fact that £ is a PDF,
which we use to get best estimators with the tricks introduced in
earlier classes. When needed, we'll denote it as £ because L is used in
Sivia for the logarithm of the posterior PDF

» In everyday applications, you will maximize In £, or minimize —In L
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ML Estimator: Exponential PDF

Example

Consider N data points distributed according to the exponential PDF
p(t|T) = e~t/7 /7. The log-likelihood function is

N
t.
[ ) = = — < _’>
np(Dj|t) =InL Z |n7’—|-7_
i=1
Maximizing with respect to 7 gives
N
dlnL 1
3], =0 = P= gt

It's also easy to show that

E(7) =7 = 7 is unbiased
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Properties of ML Estimators

» ML estimators are usually consistent (6§ — 6)
» ML estimators are usually biased (b = E (§) — 0 # 0)
» ML estimators are invariant under parameter transformations:

—_

f(0) = £(A)

Example

Working with A = 1/7 in the exponential distribution, it's easy to show
that A =1/7 [2].

» Due to sum of terms in In £, it tends toward a Gaussian by the Central

Limit Theorem, so
) (_aﬂnﬁ )‘1
0

7%=\ "o
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Minimum Variance Bound

Rao-Cramér-Frechet Inequality

Given L you can also put a lower bound on the variance of a ML estimator:
. ab\? PInL

For the exponential distribution,

SH(-2), beo
2 T T

and so we can prove that 7 is efficient (variance is at the lower bound):

Example

e
0T2
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Variance of ML Estimators

» We can express the variance of ML estimators using the same tricks we
applied to the posterior PDF: expand In £ in a Taylor series about 6:

(6 — )
2092

n E(é +04) = InLinax — 1

In £(0) ~ In Liax —

> In other words, a change in 6 by one standard deviation from 8 leads
to a decrease in In £ by 1/2 from its maximum value

» The definition Aln L = 1/2 is often taken as the definition of
statistical uncertainty on a parameter

» Strictly speaking this is only correct in the Gaussian limit, but it can
often be a nice, reasonably accurate shortcut
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Variance of ML Estimators

Realization of Exponential Data

Example

Generating 50 {t;} according to an exponential distribution with 7 = 1:

6 -47.0
-475
5
-48.0
4
_-485
*x
= =
53 = -49.0
3 =
[*] 3
=
= 495
2
-50.0
1
H -50.5
8o 0.5 7.0 15 2.0 25 3.0 -51.0 .
t T

Using the criterion Aln £ = 0.5 we find 7 = 0.96"0 13
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Variance of ML Estimators
More Data

Adding more data narrows the distribution of £, as you would expect for
any PDF

0.1 ; ; ; T T
— N=50
—— N=100

AlmL{t;}|n)
IS
[ S

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15
T

The distribution also becomes more symmetric, which you would expect
from the Central Limit Theorem
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Asymmetric Uncertainties

» Because In £ becomes increasingly parabolic with N due to the
Central Limit Theorem, we can define rules of thumb for estimating
variances on parameters:

In £(0) ~ In Lopax — ~—5—

Range AlnL
lo  1/2-(1)>=05
200 1/2-(2)2=2
300 1/2-(3)>=45

» This is done even when the likelihood isn't parabolic, producing
asymmetric error bars (as we saw)

» Justification: you can reparameterize 6 such that In £ is parabolic,
which is OK because of the invariance of the ML estimator under
transformations
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Other Approaches to Calculate Variance

» You could use £ to estimate a central confidence interval on #: find
the 16t and 84t" percentiles

» Monte Carlo Method: generate many random realizations of the data,
maximize In £ for each, and study the distribution of 6:

700

600
500

= 400

g

=

8 300
200

100

1.6 1.8

» From 10,000 realizations of the exponential data set, the distribution
of ML estimators 7 gives 7 = 0.99Jj8:ig. Not bad...
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ML Technique with > 1 Parameter

> For > 1 parameter:

0.14

0.12
= 0.10
Eh cov (xi, xj) =
< 004 )
0.02
200l 1 ~07InL
. — " 0xi9% |5, 5,
25 3 E 25 » Use the Aln L trick
! : to get contours for
' 1o, 20, etc.
» Project ellipse onto
each axis (i.e.,
marginalize) to get
lOJ 10 ‘15 20I 25 30 18.0 0.1 0.2 0.3 0.4 0.5 0.6 1 H H
A R uncertainties in each
parameter
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ML Technique: Joint Confidence Intervals

Usually we want to calculate a joint likelihood on several parameters but
only produce confidence intervals for individual parameters. However, if we
want confidence ellipses in several parameters jointly, we need to change
the Aln L rule a bit:

joint parameters
Range p 1 2 3 4 5 6
lo 68.3% | 0.50 1.15 1.76 236 295 352
20 95.4% | 2.00 3.09 401 485 565 6.4
30 99.7% | 450 5.90 7.10 8.15 9.10 10.05

It's not very common to calculate things this way; usually we are interested
in the marginal distributions of individual parameters. For more details on

this, see [3].

Segev BenZvi (UR)
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Connection to x?

» Suppose our data D are identical independent measurements with
Gaussian uncertainties. Then the likelihood is

V2mo; 202

D)2 N
p(Difx, 1) = — p[—(FD)} p(DIx, 1) = [[ p(Dix, 1),
i i=1

where we defined the functional relationship between x and the ideal
(noiseless) data F as
Fi = f(X, I)

» If we define x? as the sum of the squares of the normalized residuals
(F,' - D,')/O’,', then

N

2 (Fi — Di)? X2
X :ZT = p(D|x, ) oc exp Y

i=1
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Maximum Likelihood and Least Squares

» With a uniform prior on x, the logarithm of the posterior PDF is
2
L=Inp(x|D,I) =Inp(D|x,|) = constant — 5

» The maximum of the posterior (and likelihood) will occur when 2 is a
minimum. Hence, the optimal solution X is called the least squares
estimate

» Least squares/maximum likelihood is used all the time in data
analysis, but...

» Note: there is nothing mysterious or even fundamental about this;
least squares is what Bayes' Theorem reduces to if:

1. Your prior on your parameters is uniform
2. The uncertainties on your data are Gaussian

Segev BenZvi (UR) 22 /37



Maximum Likelihood: Poisson Case

» Suppose that our data aren't Gaussian, but a set of Poisson counts n
with expectation values v. E.g., we are dealing with binned data in a
histogram. Then the likelihood becomes

N nj Vi

p(nl 1) = [ 5=

n;!
i=1 !

» In the limit N — large, this becomes

- (ni —i)?
p(nilv, 1) oc exp [— Z 12—%’]
i=1
» The corresponding x? statistic is given by

Z i —vj)?

i=1
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Pearson’s y? Test

» The quantity
N

2
2 (ni—v)
R s

i=1
is also k P 's x? statisti
Is also known as Pearson's x“ statistic

Pearson’s 2 test is a standard frequentist method for comparing
histogrammed counts {n;} against a theoretical expectation {v;}

\4

» Convenient property: this test statistic will be asymptotically
distributed like X%v regardless of the actual distribution that generates
the relative counts {n;}. It is distribution free

> In practice, we can use Pearson’s x? to calculate a p-value
2 2
p(XPearson 2 X |N)
» Caveat: the counts in each bin must not be too small; n; > 5 for all i

is a reasonable rule of thumb
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Modified Least Squares

v

Sometimes you will encounter a 2
statistic for binned data defined like this:

0.30

flw)

data 2 . N (nl . f;)z
0.25 X = Z n;
i=1

0.20 » The variance is no longer the expected
counts (as expected in a Poisson

Eois distribution) but the observed counts n;.
; This is called modified least squares
0.10 » You don't really want this, unless you
made mistakes counting n;
0.05 » But, statistics packages may use this
statistic when fitting functions to binned
0‘000 2 4 6 8 10 data
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Robustness of Least Squares Algorithm

» Our definition of x? as the quadrature sum (or /-norm) of the
residuals makes a lot of calculations easy, but it isn't particularly
robust. l.e., it can be affected by outliers

v

Note: the /i-norm

N

li-norm = Z

i=1

F,-—D,-'

g

is much more robust against outliers in the data

v

This isn't used too often but if your function f(x) is linear in the
parameters it's not hard to calculate

v

See chapter 15 of Numerical Recipes in C for an implementation [3]

\4

In Python there should be an implementation in the statsmodels
package [4]
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Application: Fitting a Straight Line to Data

Example

Suppose we have N measurements y; with Gaussian uncertainties o;
measured at positions x;.

y=ma+c

Given the straight line model y; = mx; + b, what are the best estimators of
the parameters m and b7

v
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Minimize the y?
Letting F; = mx; + b and D; = y;, the x? is

N
2 (mx;+b—y;)2
=2
i=1 !

Minimizing x? as a function of the parameters gives

x> N 2(mx; + b — yi)x; ox? N 2(mx; + b —yi)
2 and o= ST

(o
i=1 / i=1 !

Defining w; = 2/02 and rewriting this as a matrix equation,

(A C\(m P\
= (e 5)(5)-(5) -
A=Zx,-2w,-, B=ZW,', C:ZXiW” P:ZXIYIWI; qZZYiWi
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Best Estimators of a Linear Function

» Inverting the matrix, we find that

Br=Cq and B_qu—Cp
AB — C2 - AB— (2

m=

» The covariance matrix is found by evaluating [2VV %] 1

o2 o2\ 5 A\ B 2 B -C
o2, o2) “\C B} T AB-C2\-C A
» We note that even though the data {y;} are independent, the

parameters i1 and b end up anticorrelated due to the off-diagonal
terms in the covariance matrix

» This makes a lot of sense, actually; wiggling the slope of the line m
clearly changes the y-intercept b
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LS Uncertainties
Example LS fit: best estimators M = 2.66 4+ 0.10, b = 2.05 + 0.51,

cov(m,b) = —0.10 = p = —0.94, quite anti-correlated
30 5 -
* 1
2y 1 4 1
20} + l
3 \
> 15} § <
b ]
10t
5 1 3
00 2 4 6 8 10 00 1 2 ‘ 3 4 5

m

We calculated the covariance matrix analytically, but note that we could
have used a fitter with a quadratic approximation, or noted that

A2 = 2AInL

. Ax? =1 from minimum = 1o contour

Segev BenZvi (UR)
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Generalization: Correlated Uncertainties in Data

» So far we have been focusing on the case where uncertainties in our
measurements are completely uncorrelated
» If this is not the case, then we can generalize x? to

AN T o N
X=-y) = (y-9)
where X is the covariance matrix of the data
» If the fit function depends linearly on the parameters,

m
y(x) =Y aifi(x),  y=A-a,  Aj=fi(x)
i=1

then
C=-9) = (y-9)
—(y—A-a) = l(y—A-a)
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Exact Solution to Linear Least Squares

» This is the case of linear least squares; the LS estimators of the {a;}
are unbiased, efficient, and can be solved analytically

» The general solution:

(y—A-a) =1 (y—A-a)
(ATz1a) AT L.y
(ATzta)!

X2

a
cov ( A,', §j)

» In practice one still minimizes numerically, because the matrix
inversions in the analytical solution can be computationally expensive
and numerically unstable

» Nice property: if uncertainties are Gaussian and the fit function is
linear in the m parameters, then x? ~ x%,_, . But often these
assumptions are broken, e.g., when using binned data with low counts
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Nonlinear Least Squares

> If y(x) is nonlinear in the parameters, we
can try to approximate 2 as quadratic and
use Newton's Method:

a1 = a, — [H(a,)] *Vx?3(an)

» But, this could be a poor approximation to
the function, so we could also try to use
steepest descent:

aptl = ap — ’anX2(an)

» Levenberg-Marquardt Algorithm: use
steepest descent far from the minimum,
then switch to using the Hessian [3]. Basis
of scipy.optimize.curve_fit

Segev BenZvi (UR) 33 /37



x? and Goodness of Fit

v

Because x? ~ x3_,, if several conditions are satisfied, it can be used
to estimate the goodness of fit

v

Basic idea: the outcome of Linear Least Squares is the value x2,. .
Goodness of fit comes from calculating the p-value

pP(X* > XZn| N, m)

» This tail probability tells us how unlikely it is to have observed our
data given the model and its best fit parameters

» Recall the warning about p-values: they are biased against the null
hypothesis that the model is correct, and can lead you to spuriously
reject a model

v

The 50 rule applies, because we're not dealing with a proper posterior
PDF
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ML and Goodness of Fit

v

The ML technique does not provide a similar goodness of fit parameter
because there is no standard reference distribution to compare to

» Suggested approach: estimate paramaters with ML, but calculate
goodness of fit by binning the data and using x>

» Note: be careful about assuming that your y? statistic actually
follows a x? distribution. Remember that this is true only for linear
models with Gaussian uncertainties

v

This isn't the 1920s. Use simulation to model the distribution of your
x? statistic and calculate p-values from that distribution
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Summary

» The maximum likelihood (ML) method and the least squares (LS)
method are very popular techniques for parameter estimation and are
easy to implement

» Generally it's better to use the ML technique if you have the PDFs of
the measurements. Your estimators will be biased though it's not an
issue in the large N limit

» If your problem is linear in the parameters and you have Gaussian
uncertainties, you can use LS. Advantage: closed form solutions and a
measure of the goodness of fit

» Uncertainties on estimators:

Error [ AInL  Ax?
lo 0.5 1
20 2 4
30 45 9
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