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Maximum Likelihood and Method of Least Squares
I Suppose we measure data x and we want to find the posterior of the

model parameters θ. If our priors on the parameters are uniform then

p(θ|x , I ) ∝ p(x |θ, I ) p(θ|I ) = p(x |θ, I ) = L(x |θ)

I In this case finding the best estimate θ̂ is equivalent to maximizing the
likelihood L

I If {xi} are independent measurements with Gaussian errors then

p(x |θ, I ) = L(x |θ) =
1

(2πΣ)N/2 exp

(
−

N∑
i=1

(f (xi )− xi )
2

2σ2
i

)

I Least Squares: equivalent to maximizing lnL, except you minimize

χ2 =
N∑
i=1

(f (xi )− xi )
2

σ2
i

Segev BenZvi (UR) PHY 403 3 / 35



Obtaining Uncertainty Intervals from ∆ lnL and ∆χ2

For Gaussian uncertainties
we can obtain 1σ, 2σ, and
3σ intervals using the
rules

Error ∆ lnL ∆χ2

1σ 0.5 1
2σ 2 4
3σ 4.5 9

Even without Gaussian
errors this can work
reasonably well. But, a
safe alternative is
simulation of lnL with
Monte Carlo
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Marginal and Joint Confidence Regions

The curves ∆χ2 = 1.00, 2.71, 6.63 project onto 1D intervals containing
68.3%, 90%, and 99% of normally distributed data

Note that it’s the intervals, not the ellipses themselves, that contain 68.3%.
The ellipse that contains 68% of the 2D space is ∆χ2 = 2.30 [1]
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Joint Confidence Intervals
If we want multi-dimensional error ellipses that contain 68.3%, 95.4%, and
99.7% of the data, we use these contours in ∆ lnL:

joint parameters
Range p 1 2 3 4 5 6
1σ 68.3% 0.50 1.15 1.76 2.36 2.95 3.52
2σ 95.4% 2.00 3.09 4.01 4.85 5.65 6.4
3σ 99.7% 4.50 5.90 7.10 8.15 9.10 10.05

Or these in ∆χ2 [1]:

joint parameters
Range p 1 2 3 4 5 6
1σ 68.3% 1.00 2.30 3.53 4.72 5.89 7.04
2σ 95.4% 4.00 6.17 8.02 9.70 11.3 12.8
3σ 99.7% 9.00 11.8 14.2 16.3 18.2 20.1
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Propagation of Uncertainties

I We know that measurements (or fit parameters) x have uncertainties,
and these uncertainties need to be propagated when you calculate
functions of measured quantities f (x)

I From undergraduate lab courses you know the formula [2]

σ2
f ≈

N∑
i=1

(
∂f

∂xi

)2

σ2
xi

I Question: what does this formula assume about the uncertainties on
x = (x1, x2, . . . , xN)?

I Question: what does this formula assume about the PDFs of the {xi}
(if anything)?

I Question: what does this formula assume about f ?
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Propagation of Uncertainties

I Let’s start with a set of N random variables x . E.g., the {xi} could be
parameters from a fit

I We want to calculate a function f (x), but suppose we don’t know the
PDFs of the {xi}, just best estimates of their means x̂ and the
covariance matrix V

I Linearize the problem: expand f (x) to first order about the means of
the xi :

f (x) ≈ f (x̂) +
N∑
i=1

∂f

∂xi

∣∣∣∣
x=x̂

(xi − x̂i )

I The name of the game: calculate the expectation and variance of f (x)
to derive the error propagation formula. To first order,

E [f (x)] ≈ f (x̂)
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Error Propagation Formula
I Get the variance by calculating the expectation of f 2:

E [f 2(x)] ≈ f 2(x̂) + 2f (x̂)
N∑
i=1

∂f

∂xi

∣∣∣∣
x=x̂

E (xi − x̂i )

+ E

( N∑
i=1

∂f

∂xi

∣∣∣∣
x=x̂

(xi − x̂i )

) N∑
j=1

∂f

∂xj

∣∣∣∣
x=x̂

(xj − x̂j)


= f 2(x̂) +

N∑
i ,j=1

∂f

∂xi

∂f

∂xj

∣∣∣∣
x=x̂

Vij

I Since var (f ) = σ2
f = E (f 2)− E (f )2, we find that

σ2
f ≈

N∑
i ,j=1

∂f

∂xi

∂f

∂xj

∣∣∣∣
x=x̂

Vij
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Error Propagation Formula

I For a set of m functions f1(x), . . . , fm(x), we have a covariance matrix

cov (fk , fl) = Ukl ≈
N∑

i ,j=1

∂fk
∂xi

∂fl
∂xj

∣∣∣∣
x=x̂

Vij

I Writing the matrix of derivatives as Aij = ∂fi/∂xj , the covariance
matrix can be written

U = AVA>

I For uncorrelated xi , V is diagonal and so

σ2
f ≈

N∑
i=1

∂f

∂xi

∣∣∣∣
x=x̂

σ2
i

This is the form you’re used to from elementary courses.
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Propagation of Uncertainties for Two Variables

I Let x = (x , y). The general form of σ2
f is

σ2
f =

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y + 2

∂f

∂x

∂f

∂y
ρσxσy

I The final cross term is ignored altogether in lab courses, but it’s
important! Since the correlation between x and y can be negative,
you can overestimate the uncertainty in f by failing to include it

I Don’t forget the assumptions underlying this expression:
1. Gaussian uncertainties with known covariance matrix
2. f is approximately linear in the range (x ± σx , y ± σy )

I If the assumptions are violated, the error propagation formula breaks
down
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Interpolation of Linear Fit

Example

Example LS fit: best estimators m̂ = 2.66± 0.10, b̂ = 2.05± 0.51,
cov (m, b) = −0.10 =⇒ ρ = −0.94

y(5.5) = 16.68± 0.75 without using the correlation. With the correlation,
y(5.5) = 16.68± 0.19.

Segev BenZvi (UR) PHY 403 13 / 35



Breakdown of Error Propagation

Example
Imagine two independent variables x and y with x̂ = 10± 1 and
ŷ = 10± 1. The variance in the ratio f = x2/y is

σ2
f =

[
4
(
x

y

)2

σ2
x +

(
x

y

)4

σ2
y

]
x=x̂

For x̂ = ŷ = 10 and σ2
x = σ2

y = 1,

σ2
f = 4

(
10
10

)2

(1)2 +

(
10
10

)4

(1)2 = 5

But, suppose ŷ = 1. Then the uncertainty blows up

σ2
f = 4

(
10
1

)2

(1)2 +

(
10
1

)4

(1)2 = 10400
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Breakdown of Error Propagation

I What happened? If ŷ = 1, then y can be very close to zero when
f (x , y) is expanded about the mean, so f can blow up and become
non-linear

I Note: be careful even when the error propagation assumptions of
small uncertainties and linearity apply; the resulting distribution could
still be non-Gaussian. Example: x/y , with x̂ = 5± 1 and ŷ = 1± 0.5:

I In this case, reporting a central value and RMS for f = x/y is clearly
inadequate
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Case Study: Polarization Asymmetry

Example
I Early evidence supporting the Standard Model of particle physics came

from observing the difference in cross sections σR and σL for inelastic
scattering of right- and left-handed polarized electrons on a deuterium
target [3]

I The experiment studied the polarization asymmetry defined by

α =
σR − σL
σR + σL

I Must be careful about using the error on α to conclude whether or not
α is consistent with zero

I More robust approach: check whether or not σR − σL alone is
consistent with zero
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Averaging Correlated Measurements using Least Squares
I Imagine we have a set of measurements xi ± σi of some “true value”
λ. Since λ is the same for all measurements, we can minimize

χ2 =
N∑
i=1

(xi − λ)2

σ2
i

I The LS estimator for λ is the weighted average

λ̂ =

∑
yi/σ

2
i∑

1/σ2
i

, var (λ̂) =
1∑
1/σ2

i

I For correlated measurements, we can write

χ2 =
N∑

i ,j=1

(xi − λ)(V−1)ij(xj − λ)

∴ λ̂ =
N∑
i=1

wixi , wi =

∑N
j=1(V−1)ij∑N

k,l=1(V−1)kl
, var (λ̂) =

N∑
i ,j=1

wiVijwj
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Example: Averaging Correlated Measurements

Example
We measure a length with two rulers made of different materials (and
different coefficients of thermal expansion). Both are calibrated to be
accurate at T = T0 but otherwise have a temperature dependence

yi = Li + ci (T − T0)

We know the ci and the uncertainties, T , and L1 and L2 from the
calibration. We want to combine measurements and get ŷ . The variances
and covariance are

var (yi ) = σ2
i = σ2

Li
+ c2

i σ
2
T

cov (y1, y2) = E (y1y2)− ŷ2 = c1c2σ
2
T

Solve for ŷ with the weighted mean derived using least squares
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Example: Averaging Correlated Measurements

Example
Plug in the following values: T0 = 25, T = 23± 2, and

Ruler ci Li yi
1 0.1 2.0± 0.1 1.80± 0.22
2 0.2 2.3± 0.1 1.90± 0.41

Solving, we find the weighted average is

ŷ = 1.75± 0.19

So the effect of the correlation is that the weighted average is less than
either of the two individual measurements.
Does that make sense?
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Averaging Correlated Measurements

I Horizontal bands: lengths Li from
two rulers

I Slanted: lengths yi corrected for T
I If L1 and L2 are known accurately,

but y1 and y2 differ, then the true
temperature must be different than
the measured value of T

I The χ2 favors reducing ŷ until
y1(T ) and y2(T ) intersect

I If the correction ∆T � σT , some
assumption is probably wrong. This
would be reflected as a large value
of χ2 and a small p-value
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Asymmetric Uncertainties
I You will often encounter published data with asymmetric error bars σ+

and σ−, e.g., if the author found an error interval with the
maximimum likelihood method

I What do you do if you have no further information about the form of
the likelihood, which is almost never published?

I Suggestion due to Barlow [4, 5]: parameterize the likelihood as

lnL = −1
2

(x̂ − x)2

σ(x)2

where σ(x) = σ + σ′(x − x̂). Requiring it to go through the −1/2
points gives

lnL = −1
2

(
(x̂ − x)(σ+ + σ−)

2σ+σ− + (σ+ − σ−)(x − x̂)

)
I When σ+ = σ− this reduces to an expression that gives the usual

∆ lnL = 1/2 rule
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Full Bayesian Approach
Transformation of Variables

I In the Bayesian universe, you would ideally know the complete PDF
and use that to propagate uncertainties

I In this case, if we have some p(x |I ) and we define y = f (x), then we
need to map p(x |I ) to p(y |I )

I Consider a small interval δx around x ′ such that

p(x ′ + δx/2 ≤ x < δx/2|I ) ≈ p(x = x ′|I ) δx

I y = f (x) maps x ′ to y ′ = f (x ′) and δx to δy . The range of y values
in y ′± δy/2 is equivalent to a variation in x between x ′± δx/2, and so

p(x = x ′|I ) δx = p(y = y ′|I ) δy

In the limit δx → 0, this yields the PDF transformation rule

p(x |I ) = p(y |I )
∣∣∣∣dydx

∣∣∣∣
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Transformation of Variables
More than One Variable

I For more than one variable,

p({xi}|I ) δx1 . . . δxm = p({yi}|I ) δmvol({yi})

where δmvol({yi}) is an m-dimensional volume in y mapped out by
the hypercube δx1 . . . δxm

I The m-dimensional equivalent of the 1D transformation rule is

p({xi}|I ) = p({yi}|I )
∣∣∣∣∂(y1, . . . , ym)

∂(x1, . . . , xm)

∣∣∣∣
where the rightmost expression is the Jacobian matrix of partial
derivatives dyi/dxj
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Polar Coordinates

Example
For x = R cos θ and y = R sin θ,∣∣∣∣ ∂(x , y)

∂(R, θ)

∣∣∣∣ =

∣∣∣∣cos θ −R sin θ
sin θ R cos θ

∣∣∣∣ = R(cos2 θ + sin2 θ) = R

Therefore, p(R, θ|I ) is related to p(x , y |I ) by

p(R, θ|I ) = p(x , y |I ) · R

You saw this earlier in the semester with the Rayleigh distribution:

p(x , y |I ) =
1

2πσ2 exp
{
−x2 + y2

2σ2

}
=⇒ p(R, θ|I ) =

R

2πσ2 exp
{
− R2

2σ2

}
We have just equated the volume elements dx dy = R dR dθ.
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Application to Simple Problems
I If we want to estimate a sum like z = x + y or a ratio z = x/y , we

integrate the joint PDF p(x , y |I ) along the shaded strips defined by
δ(z − f (x , y)):

I The explicit marginalization is

p(z |I ) =

∫∫
dx dy p(z |x , y , I ) p(x , y |I )

=

∫∫
dx dy δ(z − f (x , y)) p(x , y |I )
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Sum of Two Random Variables
I The sum z = x + y requires that we marginalize

p(z |I ) =

∫∫
dx dy δ(z − (x + y)) p(x , y |I )

I If we are given x = x̂ ± σx and y = ŷ ± σy , then we can assume x and
y are independent and factor the joint PDF into separate PDFs by the
product rule:

p(z |I ) =

∫
dx p(x |I )

∫
dy p(y |I ) δ(z − x − y)

=

∫
dx p(x |I ) p(y = z − x |I )

I Assuming Gaussian PDFs for x and y ,

p(z |I ) =
1

2πσxσy

∫
dx exp

{
−(x − x̂)2

2σ2
x

}
exp
{
−(z − x − ŷ)2

2σ2
y

}
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Sum of Two Random Variables

After some rearranging of terms and changes of variables, we can express

p(z |I ) =
1

2πσxσy

∫
dx exp

{
−(x − x̂)2

2σ2
x

}
exp
{
−(z − x − ŷ)2

2σ2
y

}
as

p(z |I ) =
1√
2πσz

exp
{
−(z − ẑ)2

2σ2
z

}
where

ẑ = x̂ + ŷ and σ2
z = σ2

x + σ2
y

Hence, we see how the quadrature sum rule for adding uncertainties derives
directly from the assumption of Gaussian errors. Note that for a difference
z = x − y , the uncertainties still add in quadrature but ẑ = x̂ − ŷ , as you’d
expect
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Case Study: Amplitude of a Bragg Peak in Crystallography

Isn’t this serious overkill given that we have the error propagation formula?
Unfortunately, recall that the formula can break down

Example
I In crystallography, one measures a Bragg peak A = Â± σA
I The peak is related to the structure factor A = |F |2

I We want to estimate f = |F | =
√
A. From the propagation formula,

f =
√
Â± σA

2
√
Â

I Problem: suppose Â < 0, which is an allowed measurement due to
reflections

I Now we’re in trouble, because the error propagation formula requires
us to take the square root of a negative number
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Solution with Full PDF
I Let’s write down the full posterior PDF

p(A|{data}, I ) ∝ p({data}|A, I ) p(A|I )

I By applying the error propagation formula, we assumed A is
distributed like a Gaussian, so

p({data}|A, I ) ∝ exp

{
−(A− Â)2

2σ2
A

}
I Since A < 0 is a problem, let’s define the prior to force A into a

physical region:

p(A|I ) =

{
constant A ≥ 0
0 otherwise

When Â < 0, the prior will truncate the Gaussian likelihood
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Solution with Full PDF
I Truncating the PDF violates the error propagation formula, because it

depends on a Taylor expansion about a central maximum
I There is no such restriction on the formal change of variables to f :

p(f |{data}, I ) = p(A|{data}, I ) ·
∣∣∣∣dAdf

∣∣∣∣
I The Jacobian is |dA/df | = 2f , with f = |F | ≥ 0, so

p(f |{data}, I ) ∝ f · exp

{
−(A− Â)2

2σ2
A

}
for f ≥ 0

I Find f̂ by maximizing ln p, and σ2
f from σ2

f = (−∂2 ln p/∂f 2)−1:

2f̂ 2 = Â +

√
Â2 + 2σ2

A, σ2
f =

[
1
f̂ 2

+
2(3f̂ 2 − Â)

σ2
A

]−1
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Asymptotic Agreement of PDF and Error Propagation

I When Â > 0 and Â� σA, the expressions for f and σ2
f are

2f̂ 2 = Â +

√
Â2 + 2σ2

A → f̂ =
√
Â

σ2
f =

[
1
f̂ 2

+
2(3f̂ 2 − Â)

σ2
A

]−1

→
σ2
A

4Â

I For example, if A = 9± 1, the posterior PDFs of A and f look very
similar to the Gaussian PDF implied by the error propagation formula:
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Asymptotic Agreement of PDF and Error Propagation
I If A = 1± 9, the error propagation formula (dashed) begins to blow

up compared to the full PDF:

I If A = −20± 9, the error propagation formula can’t even be applied.
The posterior PDF looks like a Rayleigh distribution:
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Summary

I The standard error propagation formula applies when uncertainties are
Gaussian and f (x) can be approximated by a first-order Taylor
expansion (linearized)

I Most undergraduate courses emphasize only uncorrelated
uncertainties, but you need to account for correlations

I Often authors will report asymmetric error bars, implying non-Gaussian
uncertainties, without giving the form of the PDF. In this case there
are some approximations to the likelihood that you can try to use

I Standard error propagation breaks down when the errors are
asymmetric or f (x) can’t be linearized

I The general case is to use the full PDF to construct a new uncertainty
interval on your best estimator. It’s a pain (and often overkill) but it is
always correct and can help you when standard error propagation fails
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