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Review of Systematic Effects

I When designing an experiment and
taking data, you need to worry about
systematic effects and offsets

I Systematics are not caused by faulty
calibration or equipment; those are
mistakes

I When taking data, test the robustness
of results by varying the conditions:
analysis cuts, techniques, etc.

I Worry about offsets and unexpected
results, try to remove them

I Assign a systematic uncertainty when
other options are exhausted. Knowing
when to cut your losses comes with
experience
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An Example Error Budget

I Here is a systematic error budget for the energy scale of an air
fluorescence detector, discussed in the last class:

Source Uncertainty
Fluorescence Yield Y 14%
p, T , e Effects on Y 7%
Calibration 9.5%
Atmosphere 4%
Reconstruction 10%
Invisible Energy 4%
Total 22%

I Note how the uncertainties are added in quadrature. What has been
assumed here?

I If you were working on this experiment, which uncertainties would you
try to minimize first? What is the best use of your time?
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Case Study: Fitting an Inappropriate Function
Example
Suppose you have a calorimeter that gives you a signal s, which is related
to energy by E = s + 0.3s2 [1].

You take data and fit a straight line E = a + b · s, and use the values â and
b̂ in your analysis.
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Case Study: Fitting an Inappropriate Function
I You find that χ2 = 16.94 with 8 degrees of freedom, which is large

but not unreasonable. (What is the approximate p-value?)
I So you stick with the linear fit, but as a check you calibrate (i.e., fit)

the subranges 0 ≤ s ≤ 0.5 and 0.5 < s ≤ 1 separately:

I Result: the slopes are 1.17± 0.03 and 1.57± 0.06, definitely not
agreeing within statistical uncertainties.
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Case Study: Fitting an Inappropriate Function

I You follow the procedure for dealing with systematic effects (check,
re-check, worry) but fail to spot that the linear calibration is itself
inadequate.

I Result: you incorporate a systematic uncertainty of
1.57− 1.37 = 1.37− 1.17 = 0.2 into the slope b, reporting

b = 1.37± 0.02± 0.20

Is this reasonable?

I In the region 0 ≤ s ≤ 1 this systematic uncertainty seriously overstates
the error.

I Look again at the fit. The slope 1.37 is a pretty reasonable description
of the data
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Case Study: Fitting an Inappropriate Function
I What happens if the “calibration” of E (s) is extrapolated to s = 5?

I The linear extrapolation is clearly no good. Not only that, but the
systematic uncertainty is worthless for describing the calibration offset

I Lesson: there is no correct procedure for incorporating a check that
fails, but folding it into the systematics is probably wrong and should
be avoided unless there is no alternative
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Case Study: Superluminal Neutrinos
Example

I Recall the νµ time-of-flight anomaly measured by OPERA and
discussed earlier in the semester [2]:

(vν − c)/c = (2.48± 0.28± 0.30)× 10−5

I This result is in significant tension with Einstein’s relativity. Later, a
competitor experiment did not observe this effect [3]

I The OPERA collaboration carried out many checks of their analysis
before making the announcement (Sep. 2011)

I Checks of the equipment were not redone until December 2011. In
December they discovered that a partially unscrewed optical fiber was
affecting the time-of-flight measurement

I Question: did the OPERA collaboration do the right thing by going
public with their anomaly? What could/should they have done
differently?
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Quantitative Approach to Handling Systematics

Suppose you’ve done your “homework” and identified and removed all the
sytematic effects you can. You are left with some irreducible uncertainties:

I Calibration uncertainties
I Contributions from known sources of background with statistical

uncertainties
I “Theory errors,” e.g., a cross section calculated to some finite accuracy
I Inputs with measurement uncertainties, e.g., Hubble’s constant H0

If you’re a Bayesian, you would propagate these kinds of uncertainties using
marginalization (recall your homework problem about distance and
recession velocity)

In the frequentist approach, there are also standard methods for handling
systematics. This is what we will discuss today
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The ∆ Method
I The ∆ or Shift Method [4] is based on the linear propagation of errors
I Given N nuisance parameters µi with uncorrelated Gaussian

uncertainties σi and an estimator of the parameter of interest
f (µ1, . . . , µN), the linear approximation gives

σ2
f ≈

N∑
i=1

(
∂f

∂µi

)2

σ2
i

I If f is roughly linear over the region µi ± σi , then

∂f

∂µi
≈ f (µ1, . . . , µi + σi , . . . , µN)− f (µ1, . . . , µi , . . . , µN)

σi
=

∆i

σi

∴ σ2
f ≈

N∑
i=1

∆2
i

I.e., you just add all the 1σ shifts in quadrature.
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∆ Method Example: Linear Fit with Distorting Systematics

I Nice example from Scott Oser: we have a model that predicts
y = a + bx and data xi , yi , σi = 1 giving

â = 4.60± 0.93, b̂ = 0.46± 0.12

I Suppose the yi are systematically biased by ∆yi = αxi + βx2
i , where

we believe that α = 0.00± 0.05 and β = 0.00± 0.01
I Make a table with various permutations of the ±1σ errors:

α β a b ∆a ∆b

0 0 4.602 0.464 0.000 0.000
0.05 0 4.602 0.414 0.000 -0.050
-0.05 0 4.602 0.514 0.000 0.050

0 0.01 4.228 0.604 -0.374 0.140
0 -0.01 4.975 0.324 0.373 -0.140
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∆ Method Example: Linear Fit with Distorting Systematics
I We treat the systematic uncertainties in the nuisance parameters α

and β as uncorrelated and add them in quadrature:

â = 4.60± 0.93 (stat)± 0.37 (sys) = 4.60± 1.00

b̂ = 0.46± 0.12 (stat)± 0.15 (sys) = 0.46± 0.19

I There is nothing in the ∆ method that forces us to assume
uncorrelated uncertainties. Given the full covariance matrix of the
nuisance parameters V including correlations, we could write

σ2
f ≈

N∑
i=1

N∑
j=1

∆i∆j

(
Vij

σiσj

)

=
N∑
i=1

N∑
j=1

∆i∆jρij

where ρij is the correlation coefficient for variables i and j
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Monte Carlo Propagation of Systematics

If you can identify nuisance parameters and assign PDFs to them (not just
Gaussians), Monte Carlo is a good way to propagate the uncertainties

1. Start by randomly sampling values of each nuisance parameter from
its PDF

2. Analyze the data using the sampled values
3. Return to step 1 and repeat until you have enough statistics

Given the set of Monte Carlo samples you generated, you can plot the
distribution of each parameter of interest. The width of the distribution
gives the systematic uncertainty on the parameter

To identify the relative importance of each parameter, you can marginalize
over the other parameters or rerun the Monte Carlo varying just one
systematic uncertainty at a time
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Monte Carlo Propagation of Systematics

Advantages of the Monte Carlo technique:

I Free of assumptions about the PDFs such as Gaussianity
I Considers effects of all systematics jointly
I Handles correlations between systematic uncertainties

Disadvantages of the Monte Carlo technique:

I The method does not allow the data to constrain the systematics; for
that you use the pull method

I The technique does not allow you to identify the relative importance
of each nuisance parameter unless you marginalize or vary the
parameters one by one

I Monte Carlo can be a slow way to propagate uncertainties
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Covariance Matrix Approach
Imagine measurements xi which have independent statistical uncertainties
σi and a common systematic uncertainty σs . E.g., the {xi} have a
systematic additive offset s ± σs , such that xi → xi + s

var (xi ) = 〈x2
i 〉 − 〈xi 〉2

= 〈(xi + s)2〉 − 〈xi + s〉2

= 〈x2
i 〉+ 〈s2〉+ ���〈2sxi 〉 − 〈xi 〉2 − 〈s〉2 −����2〈xi 〉〈s〉

= σ2
i + σ2

s

cov (xi , xj) = 〈xixj〉 − 〈xi 〉〈xj〉
= 〈(xi + s)(xj + s)〉 − 〈xi + s〉〈xj + s〉
= [〈xixj〉 − 〈xi 〉〈xj〉] + [〈xi s〉 − 〈xi 〉〈s〉] + [〈xjs〉 − 〈xj〉〈s〉]

+ 〈s2〉 − 〈s〉2

= �����cov (xi , xj) + �����cov (xi , s) + �����cov (xj , s) + var (s)

= σ2
s
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Covariance Matrix Approach

I Thus, the covariance matrix V is written

Vij = cov (xi , xj) = δijσ
2
i + σ2

s

=

σ
2
1 + σ2

s σ2
s . . .

σ2
s σ2

2 + σ2
s . . .

...
...

. . .


with the systematic uncertainty σs added in quadrature to the
statistical uncertainties σi

I Note that if the systematic uncertainty were proportional to the
measurement such that σs = εx , we could have written

Vij =

σ
2
1 + ε2x2

1 ε2x1x2 . . .
ε2x1x2 σ2

2 + ε2x2
2 . . .

...
...

. . .
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Covariance Matrix Approach

I Generalizing, if there is another systematic uncertainty σT shared by
x1 and x2 but not x3, the covariance matrix becomes

Vij =

σ2
1 + σ2

s + σ2
T σ2

s + σ2
T σ2

s

σ2
s + σ2

T σ2
2 + σ2

s + σ2
T σ2

s

σ2
s σ2

s σ2
3 + σ2

s


I Once we have a covariance matrix, we can write down

χ2 =
N∑
i=1

N∑
j=1

(xi − µ− ŝ)V−1
ij (xj − µ− ŝ).

if we have an existing estimator ŝ. Minimizing χ2 will give a ML/LS
estimator µ̂.
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Handling a Systematic Offset
I Let s = 2.0± 0.4, {xi} = (10.0, 10.0, 11.0, 12.0), and σi = 1.0
I What one would usually do is solve for the central value µ̂ given the

estimator ŝ = 2.0:

µ̂ =
1
N

4∑
i=1

xi − ŝ = 8.75

var (µ̂) =
1∑

i 1/σ
2
i

=
1
4

∴ µ̂ = 8.75± 0.5 (stat)

I There is also a systematic uncertainty on the parameter due to σs ,
which can be added in quadrature to the statistical uncertainty:

µ̂ = 8.75± 0.5 (stat)± 0.4 (sys) = 8.75±
√

0.52 + 0.42

= 8.75± 0.64
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Solution using χ2 Minimization
Just to demonstrate that it works, here is the result of minimizing

χ2 =
N∑
i=1

N∑
j=1

(xi − µ− ŝ)V−1
ij (xj − µ− ŝ)

I The χ2 minimum is µ̂ = 8.75
I Using ∆χ2 = 1 to identify the 1σ

uncertainty on µ̂ (exact this time
because all errors are Gaussian)
gives

µ̂ = 8.75± 0.64

I So the ML/LS methods we
described last week can be applied
in the presence of systematic
uncertainties
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Adding Constraints to the Likelihood

I Recall the definition of the posterior PDF given parameters θ and α:

p(θ, α|D, I ) ∝ p(D|θ, α, I ) p(θ|I ) p(α|I )

I The ML estimator lnL(θ) = ln p(D|θ, I ) assumes a flat prior on θ
I This is easy to generalize to include a systematic in terms of a

nuisance paramater α:

lnL(θ, α) = lnL(θ|D, α) + ln p(α)

I The first term is a regular likelihood. The second is a constraint or
“penalty” term and behaves like a prior on α

I Note: p(α) can be any valid PDF, so this can handle non-Gaussian
uncertainties
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Adding Constraints to the Likelihood: Two Rulers
I We have discussed the example of measuring a length with two

separate thermally expanding rulers made of different materials:

yi = Li + ci (T − T0),

where yi are the measured lengths, Li are the lengths measured at T0,
and ci are the coefficients of expansion

I We want to calculate the “true length” y considering T as a nuisance
parameter T = 23± 2:

−2 lnL(y ,T ) =
2∑

i=1

(
y − Li − ci (T − T0)

σL

)2

+

(
T − 23

2

)2

I The first term is the usual Gaussian likelihood, and the second is a
Gaussian constraint on T

I Procedure: marginalize over T to get the shape of the likelihood as a
function of y

Segev BenZvi (UR) PHY 403 23 / 34



Constraint Term in the Likelihood

Top plot: − lnL(y ,T ) after
marginalizing T

I Red: fixed T

I Black: marginalize − lnL as
function of T in y ± 1σ
range

Bottom: marginalizing y

I Blue: “a priori” constraint on
T = 23± 2

I Magenta: log likelihood after
marginalization of y
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The “Pull” Method
I A technique equivalent to the use of the covariance matrix, but easier

to apply in practice, is the pull method
I Given observables yi , predictions fi = f (xi ), and a covariance matrix

Vij , minimize

χ2 =
N∑
i=1

N∑
j=1

(yi − fi )V
−1
ij (yj − fj)

I In the pull method, factorize the uncertainties into uncorrelated errors
ui and correlated systematic uncertainties cki (the shift of observable i
by systematic error source k). Shift the difference yi − fi by the
amount −cki ξk , where ξk is a Gaussian:

yi − fi → (yi − fi )−
K∑

k=1

cki ξk

∴ χ2
pull = min

{ξk}

[
N∑
i=1

(
yi − fi −

∑
k c

k
i ξk

ui

)2

+
K∑

k=1

ξ2k

]
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The “Pull” Method

I Denote ξ̄k , the pulls of the sytematics, as the values of ξk at the
minimim

I Define x̄i , the pulls of the observables as

x̄i =
yi − (fi +

∑
k ξ̄kc

k
i )

ui

I We can then split χ2
pull into two diagonalized pieces:

χ2
pull = χ2

obs + χ2
sys

=
N∑
i=1

x̄2
i +

K∑
k=1

ξ̄2k

I.e., we separate the χ2 into contributions from the residuals of the
observables xi and from the systematics ξk
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Example: “Pull” Method

I To illustrate the method in practice, let’s go back to the example of
data of form y = a + bx with systematic offsets ∆yi = αxi + βx2

i

I The pull χ2 is minimized with respect to the nuisance parameters α
and β:

χ2
pull =

∑
i

(
yi − a− bxi − αxi − βx2

i

1.0

)2

+

(
α− 0
0.05

)2

+

(
β − 0
0.01

)2

Case a b

fix α, β 4.64± 0.93 0.46± 0.12
min α, fix β 4.65± 0.93 0.45± 0.13
fix α, min β 4.65± 0.99 0.45± 0.18
min α, min β 4.65± 0.99 0.45± 0.19
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Example: “Pull” Method

I By minimizing with respect to the nuisance parameters α and β, we
are doing the frequentist equivalent of marginalization

I To break the systematic uncertainty out of the total uncertainty,
calculate the quadrature difference of the statistical and total
uncertainties:

Case a b

fix α, β 4.64± 0.93 0.46± 0.12
min α, fix β 4.65± 0.93 0.45± 0.13
fix α, min β 4.65± 0.99 0.45± 0.18
min α, min β 4.65± 0.99 0.45± 0.19

a = 4.65± 0.93 (stat)±
√

0.992 − 0.932 = 4.65± 0.93± 0.34

b = 0.45± 0.12 (stat)±
√

0.192 − 0.122 = 0.45± 0.12± 0.15
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Plotting the Pulls
It is useful to plot the pulls x̄i and ξ̄k for the N parameters and K
systematics, since it helps you to pick out which parts of the fit (if any) are
dominating the disagreement with a model. For example [5],
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Pull vs. Covariance Method

I The pull method puts nuisance parameters on the same footing as
other parameters by adding penalty terms to the likelihood/χ2

I The data are used to reject certain values of the nuisance parameters
(α and β in our linear fit example) and keep their range reasonable

I So if you use a frequentist approach, your choices are to add
constraint terms to the likelihood and minimize, or calculate the
covariance matrix between all points and minimize that

I It is easier to work with pulls because the constraints on the
systematics are more obvious

I Try not to use the ∆ method if you don’t have to. You won’t get the
same kinds of constraints from the data that you get using
marginalization or the pull/covariance techniques
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Summary

I In frequentist statistics, it is convenient to separate uncertainties into
values that depend on the statistics in the data and values that
depend on systematic effects

I Don’t get hung up on the idea that these uncertainties are completely
different. As in the Bayesian world, you can combine the errors into a
total uncertainty

I Systematics can be absorbed into ML/LS techniques by expressing
them as correlated errors in a covariance matrix or using the pull
method

I Systematics can be expressed in a likelihood as penalty terms, which
you can marginalize or maximize to get a profile likelihood

I This approach lets you incorporate asymmetric uncertainties; see [6]
for how to handle asymmetric error bars in published data
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