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Last Time: Systematic Uncertainties

Bayesian approach to systematic uncertainties: marginalize them

Frequentist approach: different terminology used (“nuisance parameters”)
but the approach is a quasi-Bayesian marginalization

To propagate systematic uncertainties, there are three methods typically
used:
1. Monte Carlo: simulate your analysis by generating different random

values for your nuisance parameters. Very popular technique
2. Covariance Method: add systematics as common covariance terms to

your error matrix, carry out ML/LS method. Perfectly correct, not
typically done

3. Pull Method: calculate pull distributions for physical parameters and
nuisance parameters. Very common, because it tells you which
parameters contribute most to your error budget
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Model Selection

I For the past month we have discussed parameter estimation, which
gets us the “best estimate” of a model parameter given some
measurement

I In today’s class we will cover the topic of model selection, also known
as hypothesis testing

I In model selection, you don’t find a best fit parameter given a model.
Rather, you test whether or not the model is itself a good fit to the
data

I While the question you are asking of the data is different, the
techniques used for parameter estimation and model selection are
essentially identical (at least in the Bayesian framework)

I As usual, we don’t evaluate a hypothesis or model in isolation, but in
the context of several competing and sometimes mutually exclusive
models. You’ll see how this works with some simple examples, but it’s
pretty intuitive
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Hypothesis Testing

A cute framing device used in Sivia [1]:

Mr. A has a theory; Mr. B also has a theory, but with an
adjustable parameter λ. Whose theory should we prefer on the
basis of data D?

Example
Suppose D represents noisy measurements y as a function of x .

I Mr. A: the data are described by y = 0
I Mr. B: the data are described by y = a, with a = constant
I Mr. C: the data are described by y = a + bx

I Mr. F: the data are described by y = a + bx + cx2 + dx3 + . . .

Are the data best fit by a constant? A line? A high-order polynomial? How
do we choose?
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Posterior Odds Ratio

I As in parameter estimation, we choose between two models or
hypotheses using the ratio of posterior PDFs

posterior ratio = OAB =
p(A|D, I )
p(B|D, I )

I Recall the criteria for making a decision about which model to favor
[2]

OAB Strength of Evidence
< 1 : 1 negative (supports B)

1 : 1 to 3 : 1 barely worth mentioning
3 : 1 to 10 : 1 substantial support for A
10 : 1 to 30 : 1 strong support for A
30 : 1 to 100 : 1 very strong support for A

> 100 : 1 decisive evidence for A
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The Bayes Factor and Prior Odds

I Applying Bayes’ Theorem to the numerator and denominator of the
odds ratio gives

OAB =
p(A|D, I )
p(B|D, I )

=
p(D|A, I )
p(D|B, I )

× p(A|I )
p(B|I )

where the normalizing term p(D|I ) cancels out
I Recall that the likelihood ratio is called the Bayes Factor.
I The second term is the prior odds ratio. It describes how much you

favor model A over B before taking data
I Normally one might like to treat the models in an unbiased manner

and set p(A|I ) = p(B|I ), so that the odds ratio is completely given by
the likelihood ratio (or “Bayes Factor”). But can you think of any
situations where this might not be the case?
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When to use Nontrivial Prior Odds

Example
You are conducting a medical trial to determine if a treatment is effective.
A says it’s effective; B says it’s ineffective but otherwise harmless, i.e.,
B = A. It might be both ethical and economical to set p(A|I ) > p(B|I ).

Example
You are a particle physicist looking for new physics, e.g., a signature of
supersymmetry, with A saying the new physics is real and B saying it’s not
(B = A). The outcome of a false claim supporting A could be harmful –
colleagues’ time wasted on analysis or designing new experiments, public
embarrassment for the field, etc. – so you might be justified starting your
experiment with the prior belief p(A|I ) < p(B|I ), or perhaps even
p(A|I )� p(B|I ).
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Computing the Likelihood Ratio

I Let’s get back to the original problem of Mr. A and Mr. B, where B
proposal a model with an adjustable parameter λ

I Since λ is adjustable and unknown a priori we marginalize the
likelihood p(D|B, I ):

p(D|B, I ) =

∫
p(D, λ|B, I ) dλ =

∫
p(D|λ,B, I ) p(λ|B, I ) dλ

I The first term is an ordinary likelihood function parameterized in
terms of λ

I The second term contains any prior knowledge about λ
I It is the responsibility of Mr. B to provide some PDF describing the

state of knowledge of λ. As usual for priors, it could be a previous
measurement, a theoretical calculation, or a personal opinion
(hopefully well-motivated)
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Computing the Marginal Likelihood
I Suppose that B can only say that λ ∈ [λmin, λmax]. In this case

p(λ|B, I ) =
1

λmax − λmin

for λ inside the limits and zero otherwise
I Also suppose there is a best value λ̂ (or λ0) that yields the closest

agreement with the measurements, such that p(D|λ̂,B, I ) is a
maximum there
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Combining the Likelihood and Prior for B

I Without much loss of generality, let’s assume that p(D|λ,B, I ) is
approximately Gaussian for λ = λ̂± δλ:

p(D|λ,B, I ) = p(D|λ̂,B, I )× exp

[
−(λ− λ̂)2

2 δλ2

]

I Since the prior does not depend on λ, the marginal likelihood of B is

p(D|B, I ) =
1

λmax − λmin

∫ λmax

λmin

p(D|λ,B, I ) dλ

I As long as the limits of integration do not significantly truncate the
Gaussian in λ, the integral is approximately∫ λmax

λmin

p(D|λ,B, I ) dλ ≈ p(D|λ̂,B, I )× δλ
√
2π
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Combining the Likelihood and Prior for B

I Putting all the pieces together, the odds ratio of A and B is

OAB =
p(A|I )
p(B|I )

p(D|A, I )
p(D|λ̂,B, I )

λmax − λmin

δλ
√
2π

I First term: the usual prior odds ratio
I Second term: the likelihood ratio or Bayes factor. Because λ is an

adjustable parameter we expect this term will definitely favor B over A
I Third term: the Ockham (or Occam) factor. We expect that
λmax − λmin will be larger than the small range δλ allowed by the
data, so this term favors A over B

I The Ockham factor penalizes over-constrained fits:
It is vain to do with more what can be done with fewer
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Comments about the Uniform Prior

I Issue: isn’t it a problem if λmin and λmax are allowed to go to ±∞?
I In this case there would be an infinite penalty on model B and we

would never favor it, no matter what the data say
I In practice this pretty much never happens; claiming absolute

ignorance is just not realistic and wilfully ignores lots of physical
insight

Example
Suppose we are looking for deviations of Newtons Law of Gravitation in the
form

1
r2 →

1
r2+ε

We would never claim a prior on ε of ±∞. From below we expect ε > 0,
and from above we know that ε� 2; if it weren’t we would have already
observed a large effect
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Results Dominated by the Priors or the Ockham Factor
I In pretty much every decent experiment you tend to be in a situation

where the data (in the form of the Bayes Factor) dominates the prior
odds

I The Ockham factor becomes important if model B does not give a
much better result with more data. In this case δλ becomes
increasingly narrow, leading to bigger and bigger penalites against B

I This does not happen when the data are of bad quality, or irrelevant,
or you have low statistics. I.e., you’ve designed a bad experiment for
the physics you are trying to accomplish

I If the the data are poor then you expect

δλ� λmax − λmin

p(D|λ̂,B, I ) ≈ p(D|A, I )

OAB ≈
p(A|I )
p(B|I )
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Two Models with Free Parameters
I Let’s add a complication and suppose that A also has an adjustable

parameter µ. For example, A could predict a Gaussian peak and B a
Lorentzian peak, and λ and µ are the FWHM of the predictions

I In this case the posterior odds ratio is

OAB =
p(A|D, I )
p(B|D, I )

=
p(A|I )
p(B|I )

× p(D|µ̂,A, I )
p(D|λ̂,B, I )

× δµ(λmax − λmin)

δλ(µmax − µmin)

I If we set p(A|I ) = p(B|I ) and choose a similar prior range for µ and
λ, then

OAB ≈
p(D|µ̂,A, I )
p(D|λ̂,B, I )

× δµ

δλ

I For data of good quality, the best-fit likelihood ratio dominates. But,
if both models give similar agreement with the data then the one with
the larger error bar δµ or δθ will be favored

I Wait, what? How can the less discriminating theory do better? In the
context of model selection, a larger uncertainty means that more
parameter values are consistent with a given hypothesis
Segev BenZvi (UR) PHY 403 16 / 28



Two Models with Free Parameters

I There is another case: A and B have the same physical theory but
different prior ranges on µ and λ

I In this case, we imagine that A and B set limits that are large enough
that they incorporate all parameter values fitting reasonably to the
data

I Assuming equal a priori weighting towards A and B , the odds ratio is

OAB =
p(A|D, I )
p(B|D, I )

=
λmax − λmin

µmax − µmin

because we expect λ̂ = θ̂ and δλ = δµ

I The analysis will support the model with a narrow prior range, which it
should if B has a good reason to predict the value of his parameter
mor accurately than A
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Comparison with Parameter Estimation

I Note how this differs from parameter estimation, where we assume
that a model is correct and calculate the best parameter given that
model

I To infer the value of λ from the data, given that B is correct, we write

p(λ|D,B, I ) =
p(D|λ,B, I ) p(λ|B, I )

p(D|B, I )

I To estimate λ we want to maximize the likelihood over the range
[λmin, λmax]. As long as the range contains enough of p(D|λ,B, I )
around λ̂, its particular bounds do not matter for finding λ̂

I To calculate the odds ratio of A and B we are basically comparing the
likelihoods averaged over the parameter space

I Therefore, in model selection the Ockham factor matters because there
is a cost to averaging the likelihood over a larger parameter space
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Hypothesis Testing

I You have seen that parameter estimation and model selection are
quite similar; we are just asking different questions of the data

I In model selection we calculate the probability that some hypothesis
H0 is true, starting from Bayes’ Theorem:

p(H0|D, I ) =
p(D|H0, I ) p(H0|I )

p(D|I )

I The marginal evidence p(D|I ) can be ignored if we are calculating the
odds ratio of H0 with some other hypothesis H1

I If we actually want to know p(H0|D, I ) we need to calculate p(D|I ).
This requires the alternative hypothesis. Using marginalization and the
produce rule,

p(D|I ) = p(D|H0, I ) p(H0|I ) + p(D|H1, I ) p(H1|I )
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Hypothesis Testing

I It’s very nice when the alternative hypothesis and H0 completely
exhaust all the possibilities, i.e., H1 = H0. However, this need not be
the case

Example
Suppose we’re looking for a peak in some data. H0 could be “the shape of
the peak is Gaussian,” and H1 could be “the shape of the peak is
Lorentzian.”

Clearly H1 6= H0, but we can still define p(H0|D, I ) using the specific set of
possibilities {H0,H1}.

Still, defining a generic alternative hypothesis H1 = H0 is possible if we’re
willing to work hard at it. Consider the example of binned data where the
expected count λi in bin i is given by a flat backround and Gaussian signal
in H0. What could H0 look like?
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Hypothesis Testing in Classical Statistics
Type I Errors

I Construct a test statistic t and
use its value to decide whether
to accept or reject a hypothesis

I The statistic t is basically a
summary of the data given the
hypothesis we want to test

I Define a cut value tcut and use
that to accept or reject the
hypothesis H0 depending on the
value of t measured in data

I Type I Error: reject H0 even
though it is true with tail
probability α (shown in gray)
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Hypothesis Testing in Classical Statistics
Type II Errors

I You can also specify an
alternative hypothesis H1 and
use t to test if it’s true

I Type II Error: accept H0 even
though it is false and H1 is true.
This tail probability β is shown
in pink

α =

∫ ∞
tcut

p(t|H0) dt

β =

∫ tcut

−∞
p(t|H1) dt
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Statistical Significance and Power

I As you can see there is some tension between α and β. Increasing tcut
will increase β and reduce α, and vice-versa

I Significance: α gives the significance of a test. When α is small we
disfavor H0, known as the null hypothesis

I Power: 1− β is called the power of a test. A powerful test has a small
chance of wrongly accepting H0

Example
It’s useful to think of the null hypothesis H0 as a less interesting
default/status quo result (your data contain only background) and H1 as a
potential discovery (your data contain signal). A good test will have high
significance and high power, since this means a low chance of incorrectly
claiming a discovery and a low chance of missing an important discovery.
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The Neyman-Pearson Lemma

The Neyman-Pearson Lemma is used to balance signifance and power. It
states that the acceptance region giving the highest power (and hence the
highest signal “purity”) for a given significance level α (or selection
efficiency 1− α) is the region of t-space such that

Λ(t) =
p(t|H0)

p(t|H1)
> c

Here Λ(t) is the likelihood ratio of the test statistic t under the two
hypotheses H0 and H1. The constant c is determined by α. Note that t
can be multidimensional.

In practice, one often estimates the distribution of Λ(t) using Monte Carlo
by generating t according to H0 and H1. Then use the distribution to
determine the cut c that will give you the desired significance α.
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Hypothesis Testing in Classical Statistics: χ2 p-Value
I We have already seen a bit of model selection when discussing the

goodness of fit provided by the χ2 statistic
I If a model is correct, and the data are subject to Gaussian noise, then

we expect χ2 ≈ N. Deviations from the expectation by more than a
few times

√
2N would be surprising

I So, should we reject a hypothesis if χ2 is too large?
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Hypothesis Testing in Classical Statistics

I When we calculate a χ2 probability, we are calculating a one-sided
p-value: ∫ ∞

χ2
obs

p(χ2|N,H0, I ) dχ2

I There is an assumption baked into this p-value; it assumes that H0 is
true by definition

I To test a theory, we need the posterior probability p(H0|D, I ), not
p(D|H0, I ). So we are missing p(H0|I ) and p(D|I )

I While rejecting H0 on the basis of a small p-value can be done, it’s
risky because we are only testing the probability that the data
fluctuated away from the predictions of the model H0, not the
probability that H0 is correct given the data

I Consquence: using a p-value can overstate the evidence against H0,
leading to a Type-I error – the rejection of H0 when it is true
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Summary

I Hypothesis testing and parameter estimation are quite similar in terms
of the calculations we need to do, but they ask different things of the
data

I Parameter estimation: we use the maximum likelihood. Hypothesis
testing: we use the average likelihood

I Frequentist approach is to minimize Type I errors (rejecting a true H0)
and Type II errors (rejecting a true H1) using a likelihood ratio test.
This is justified by the Neyman-Pearson lemma

I A p-value and a Type I error rate α are not the same thing
I If you use a p-value to choose between two hypotheses, you’re asking

for trouble unless you demand very strong evidence against the null
hypothesis
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