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Hypothesis Testing

I Parameter estimation and model selection are quite similar; we are just
asking different questions of the data

I In model selection we calculate the probability that some hypothesis
H0 is true, starting from Bayes’ Theorem:

p(H0|D, I ) =
p(D|H0, I ) p(H0|I )

p(D|I )

I The marginal evidence p(D|I ) can be ignored if we are calculating the
odds ratio of H0 with some other hypothesis H1

I If we actually want to know p(H0|D, I ) we need to calculate p(D|I ).
This requires the alternative hypothesis. Using marginalization and the
produce rule,

p(D|I ) = p(D|H0, I ) p(H0|I ) + p(D|H1, I ) p(H1|I )
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Posterior Odds of Two Models A and B

I Compare model A with model B which has a tunable parameter λ:

OAB =
p(A|I )
p(B|I )

p(D|A, I )
p(D|λ̂,B, I )

λmax − λmin

δλ
√
2π

I Combination of prior odds, likelihood ratios, and an Ockham factor
that penalizes scanning over parameter λ
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Comparison with Parameter Estimation

I Note how this differs from parameter estimation, where we assume
that a model is correct and calculate the best parameter given that
model

I To infer a best estimate of a parameter λ from the data, given that B
is correct, we write

p(λ|D,B, I ) =
p(D|λ,B, I ) p(λ|B, I )

p(D|B, I )

I To estimate λ we want to maximize the likelihood over the range
[λmin, λmax]. As long as the range contains enough of p(D|λ,B, I )
around λ̂, its particular bounds do not matter for finding λ̂

I To calculate the odds ratio of A and B we are basically comparing the
likelihoods averaged over the parameter space

I Therefore, in model selection the Ockham factor matters because there
is a cost to averaging the likelihood over a larger parameter space
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Hypothesis Testing in Classical Statistics
Type I Errors

I Construct a test statistic t and
use its value to decide whether
to accept or reject a hypothesis

I The statistic t is basically a
summary of the data given the
hypothesis we want to test

I Define a cut value tcut and use
that to accept or reject the
hypothesis H0 depending on the
value of t measured in data

I Type I Error: reject H0 even
though it is true with tail
probability α (shown in gray)
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Hypothesis Testing in Classical Statistics
Type II Errors

I You can also specify an
alternative hypothesis H1 and
use t to test if it’s true

I Type II Error: accept H0 even
though it is false and H1 is true.
This tail probability β is shown
in pink

α =

∫ ∞
tcut

p(t|H0) dt

β =

∫ tcut

−∞
p(t|H1) dt
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Statistical Significance and Power

I As you can see there is some tension between α and β. Increasing tcut
will increase β and reduce α, and vice-versa

I Significance: α gives the significance of a test. When α is small we
disfavor H0, known as the null hypothesis

I Power: 1− β is called the power of a test. A powerful test has a small
chance of wrongly accepting H0

Example
It’s useful to think of the null hypothesis H0 as a less interesting
default/status quo result (your data contain only background) and H1 as a
potential discovery (your data contain signal). A good test will have high
significance and high power, since this means a low chance of incorrectly
claiming a discovery and a low chance of missing an important discovery.
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The Neyman-Pearson Lemma

The Neyman-Pearson Lemma is used to balance signifance and power. It
states that the acceptance region giving the highest power (and hence the
highest signal “purity”) for a given significance level α (or selection
efficiency 1− α) is the region of t-space such that

Λ(t) =
p(t|H0)

p(t|H1)
> c

Here Λ(t) is the likelihood ratio of the test statistic t under the two
hypotheses H0 and H1. The constant c is determined by α. Note that t
can be multidimensional.

In practice, one often estimates the distribution of Λ(t) using Monte Carlo
by generating t according to H0 and H1. Then use the distribution to
determine the cut c that will give you the desired significance α.
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Comparing Two Simple Hypotheses
I A “simple” model is one in which the model parameter θ is fixed to

some value; i.e., there are no unknown parameters to estimate
I In comparing two simple models, the null and alternative hypotheses

can be written

H0 : θ = θ0

H1 : θ = θ1

I The likelihood ratio is
Λ(t) =

p(t|θ0)

p(t|θ1)
,

and the decision rule for the test is at significance level α is

Λ > c : do not reject H0

Λ < c : reject H0

Λ = c : reject H0 with probability q,

where α = q · p(Λ = c |H0) + p(Λ < c |H0)
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Comparing Two Composite Hypotheses

I A “composite” hypothesis is one in which the parameter θ is part of a
subset Θ0 of a larger parameter space Θ:

H0 : θ ∈ Θ0

H1 : θ ∈ Θ

I The likelihood ratio is

Λ(t) =
sup {p(t|θ) : θ ∈ Θ0}
sup {p(t|θ) : θ ∈ Θ}

,

where sup refers to the supremum function, also known as the least
upper bound. The numerator is the max likelihood under H0, and the
denominator is the max likelihood under H1

I The Neyman-Pearson lemma states that this likelihood ratio test is
the most powerful of all tests of level α for rejecting H0
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Wilks’ Theorem

I If H0 is true and is a subspace of the larger parameter space
represented by H1, then as N →∞, the statistic

−2 lnΛ

will be distributed as a χ2 with the number of degrees of freedom
equal to the difference in dimensionality of Θ0 and Θ [1]

I This is what we call a nested model, and it shows up all the time

Example
Nested model of constant and line:

H0 : the data are described y = a

H1 : the data are described by y = a + bx
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Likelihood Ratio Test: Example

Example
You flip a coin N = 1000 times and get heads n = 550 times. Is it fair?

H0 : p = 0.5
H1 : p ∈ [0, 1]

Λ =
L(n,N|p,H0)

L(n,N|p,H1)

lnL = n ln p + (N − n) ln (1− p)

Under H1 the maximum likelihood estimate is p̂ = 0.55, so

−2 lnΛ = −2(lnL0 − lnL1)

= −2(550 ln 0.5 + 450 ln 0.5− 550 ln 0.55− 450 ln 0.55)

= 10.02

∴ p(χ2 > 10.02|N = 1) = 0.17%
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∆χ2 and the Likelihood Ratio Test

If you have χ2 from nested model fits, you can use ∆χ2 instead of
−2∆ lnL as long as the conditions of Wilks’ Theorem apply

Example: simulated linear data with linear and quadratic fits. The
distribution ∆χ2 has a mean of ∼ 1 and a variance of ∼ 2, as expected
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Extraterrestrial Neutrino Spectra

Sources of neutrinos at
Earth [2]:

I Cosmic ν background
I Solar neutrinos
I Atmospheric ν’s
I Astrophysical ν’s

We can’t tell apart one
kind of ν from another,
but the energy spectra
differ. So on a statistical
basis we can discriminate
populations
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“Traditional” Neutrino Detection

I Muons from cosmic rays are a large source of background in IceCube
I Put detectors underground/ice/sea to reduce muon counts
I Look in the Northern Hemisphere, where cosmic rays are blocked (but

atmospheric ν’s from air showers are not)
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All-Sky Searches for ν Point Sources in IceCube

I Compare the ratio of likelihoods for observing ns signal events to
observing background only (ns = 0) as a function of position x on the
sky:

pi (xj , ns) =
ns
N
Si (xj) +

N − ns
N

Bi (xj)

I The likelihood function is the product of all events

L(ns) =
∏

pi (xj , ns)

I The test statistic is the log-likelihood ratio

2 lnΛ = 2 ln
L(n̂s)

L(ns = 0)

Ignore the trivial sign flip; it’s still the usual definition
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IceCube Signal and Background PDFs
Si (xj) and Bi (xj) depend on the energy and sky position of the i th neutrino:

Si =
1

2πσ2
i

e−r
2
i /2σ

2
i p(Ei |α), Bi = Bzen patm(Ei )

The index α of the source spectrum E−α is a nuisance parameter
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IceCube Skymap
The all-sky search calculates the likelihood ratio at each position on the
sky. (For this analysis, only data from the Northern Hemisphere were used.)

The goal is to look for hotspots, or areas of the sky where the signal PDFs
from many ν candidates appear to produce a significant excess in lnΛ

In this particular map, the maximum value of lnΛ = 13.4, which
corresponds to a 4.8σ excess above background
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Correction for Look-Elsewhere Effects
There is a big look-elsewhere effect in the significance because the analysis
included a scan for hotspots over the full sky

Correction: simulate 104 background-only skymaps and count the number
with lnΛmax > 13.4. Result: p = 1.3%, or 2.2σ
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Major Improvement: Contained Event Search

I Define the outer shell of the detector to be
an atmospheric µ veto layer

I Effective detection volume reduced, but
atmospheric ν’s strongly suppressed above
Eν = 100 TeV [3]
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Skymap of Astrophysical Neutrino Sources

Skymap of astrophysical ν arrival directions shows some “hotspots”

For now, the value of −2 lnΛ is consistent with random clustering [3]
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Summary

I Wilks’ Theorem: if H0 is a subset of H1, the log-likelihood ratio

−2 lnΛ(t) = −2 ln L(t|H0)

L(t|H1)

is distributed like a χ2 with the number of degrees of freedom equal to
the difference in the dimensionality between H0 and H1

I The conditions under which Wilks’ Theorem hold may not apply to
your data. In this case, just produce Monte Carlo to determine the
distribution of −2 lnΛ

I Consider a Bayesian analysis, especially if you want to incorporate
prior information

I Lesson from IceCube: analysis techniques are nice for background
suppression, but nothing beats a good experimental design that
eliminates sources of background from the start
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