
Physics 403
Markov Chain Monte Carlo

Segev BenZvi

Department of Physics and Astronomy
University of Rochester

Table of Contents

1 Sampling from PDFs in Many Dimensions
Markov Chain Monte Carlo
The Metropolis-Hastings Algorithm

2 Case Study: Sampling from a 1D Distribution
Burn-In
Autocorrelation
Efficiency and Detailed Balance

3 Sampling from a Joint Distribution
Parallel Tempering

Segev BenZvi (UR) PHY 403 2 / 33

Bayesian Calculations in Many Dimensions

I Imagine that we have a probability distribution for a set of parameters
θ given by p(θ|D, I)

I Often we have to marginalize over nuisance parameters ν, where the
{ν} are uninteresting but necessary to complete the calculation:

p(θ|D, I) =

∫
dν p(θ,ν|D, I)

I If the set {ν} is large this integral can become very expensive
I Recall: we can integrate numerically using Monte Carlo sampling, but

we waste time in regions of low probability

Example
If we spend a fraction 10−1 of our time in a region of high probability for
nuisance parameter, then for m parameters the fraction falls to 10−m

Segev BenZvi (UR) PHY 403 3 / 33

Markov Chain Monte Carlo
I The goal of Markov Chain Monte Carlo (MCMC) algorithms is to

draw samples from the PDF

p(θ,ν|D, I) =
1
Z
p(D|θ,ν, I) p(θ,ν|I)

where Z = p(D|I) is the marginal evidence
I Since Z is independent of θ and ν we usually don’t have to calculate

it... which is good because it’s expensive
I Once the samples produced by MCMC are available, the expectation

value of a function of the model parameters f (x) is

〈f (θ)〉 =

∫
p(θ|D, I) f (θ) dθ ≈ 1

N

N∑
i=1

f (xi)

I In MCMC, we randomly walk over positions x in the parameter space
and draw samples x(ti) = [θi ,νi] from the distribution

Segev BenZvi (UR) PHY 403 4 / 33

Metropolis-Hastings Algorithm

At each point in a Markov chain, x(ti)depends only on the previous step
x(ti−1) according to the transition probability q(x(t + 1)|x(t))

The simplest MCMC algorithm is the Metropolis-Hastings method [1],
which proceeds in two steps:
1. Given x(t) sample a proposal position y from q(y |x(t))

2. Accept this proposal with probability

α(x(t), y) = min (1, r) = min
(
1,

p(y |D, I)
p(x(t)|D, I)

q(x(t)|y)

q(y |x(t))

)
In practice, what you do is:
1. Initialize x(0), set t = 0
2. Sample y from q(y |x(t)) and u ∼ Uniform(0, 1)

3. If u ≤ r then x(t + 1)→ y ; otherwise, x(t + 1)→ x(t)

Segev BenZvi (UR) PHY 403 5 / 33

Table of Contents

1 Sampling from PDFs in Many Dimensions
Markov Chain Monte Carlo
The Metropolis-Hastings Algorithm

2 Case Study: Sampling from a 1D Distribution
Burn-In
Autocorrelation
Efficiency and Detailed Balance

3 Sampling from a Joint Distribution
Parallel Tempering

Segev BenZvi (UR) PHY 403 6 / 33

Sampling from a Poisson Distribution

Example

Suppose we want to sample from the 1D PDF p(x |D, I) = λxe−λ/x!.
Let’s choose q(y |xt) to be a simple random walk defined by the uniform
distribution

1. Given xt , pick a random number u1 ∼ Uniform(0, 1)

2. If u1 > 0.5:
propose y = xt + 1
otherwise, y = xt − 1

3. Compute the ratio r = p(y |D, I)/p(xt |D, I) = λy−xx!/y !

4. Generate a second random number u2 ∼ Uniform(0, 1).
If u2 ≤ r :

accept xt+1 = y
otherwise, xt+1 = xt

Segev BenZvi (UR) PHY 403 7 / 33

MCMC for a Poisson Distribution
Results from MCMC simulation starting at x0 = 25:

This shows a sequence of the first 1000 samples {xt} from the MCMC
(left) and a histogram of the xt for t > 100. We cut out the first 100
samples to allow the MCMC to “burn in”

Segev BenZvi (UR) PHY 403 8 / 33

The Burn-In Period
The MCMC requires a burn-in period before the transition probability
becomes independent of t. The length of the burn-in depends on the
starting values and proposal distribution

Segev BenZvi (UR) PHY 403 9 / 33

The Autocorrelation Function

I An optimized MCMC should give you a small autocorrelation in {xt}
I The cross correlation of two time series {xt} and {yt} is

ρxy (h) = E [(xt − µx)(yt+h − µy)]/(σxtσyt+h
)

where h is a lag or shift between the series. The expectation is
calculated in the overlap between the series

I Autocorrelation is the lagged correlation of a series with itself:

ρxx(h) = E [(xt − µx)(xt+h − µx)]/(σxtσxt+h
)

=

∑
overlap [(xt − x̄)(xt+h − x̄)]√∑

overlap(xt − x̄)2
√∑

overlap(xt+h − x̄)2

Segev BenZvi (UR) PHY 403 10 / 33

The Autocorrelation Function
ACF from the Poisson MCMC
Autocorrelation tells you how much each step in the time series depends on
the value of previous steps:

Segev BenZvi (UR) PHY 403 11 / 33

Autocorrelation Time Constant

I If the transition probability is independent of t then the ACF should
fluctuate around zero. This is what happens after the burn-in

I During the burn-in, the ACF is roughly exponential in shape,

ρxx(h) ∼ exp
{
−h

τ

}
where τ is called the time constant

I Larger τ means that the MCMC takes longer to converge, so the goal
is to choose a proposal distribution that minimizes τ

I Empirically, you can estimate τ from the data and start using the data
when t is several multiples of τ

I For our Poisson example, τ ≈ 23 samples, so to be safe we’ve started
using the data at t = 4τ ≈ 100

Segev BenZvi (UR) PHY 403 12 / 33

A Note on Implementation

When implementing a calculation, it is always better to use logarithms
rather than actual values to avoid hitting numeric limits:

def poisson(lmda, x):
logp = x*np.log(lmda) - lmda - gammaln(x+1.)
return np.exp(logp)

def mhRatio(lmda, x, y):
logr = (y-x)*np.log(lmda) + gammaln(x+1.) - gammaln(y+1.)
return np.exp(logr)

If the actual PDF is needed we exponentiate at the end of the calculation.
Note that we used the definition n! = Γ(n + 1) and called the function
scipy.special.gammaln instead of using Stirling’s approximation
ln n! ≈ n ln n − n

Segev BenZvi (UR) PHY 403 13 / 33

Detailed Balance

The Metropolis-Hastings algorithm works because it reaches an equilibrium
state after the burn-in. In particular, the transition probabilities obey the
detailed balance equation, which characterizes a Markov Chain:

p(xt , xt+1|D, I) = p(xt |D, I) p(xt+1|xt)
= p(xt |D, I) q(xt+1|xt) α(xt , xt+1)

= p(xt |D, I) q(xt+1|xt) min
(
1,

p(xt+1|D, I)
p(xt |D, I)

q(xt |xt+1)

q(xt+1|xt)

)
= min (p(xt |D, I) q(xt+1|xt), p(xt+1|D, I) q(xt |xt+1))

= p(xt+1|D, I) q(xt |xt+1) α(xt+1, xt)

= p(xt+1|D, I) p(xt |xt+1)

Therefore, p(xt+1|xt) p(xt |D, I) = p(xt |xt+1) p(xt+1|D, I); the rate of
transitions xt → xt+1 is the same as the rate of transitions xt+1 → xt

Segev BenZvi (UR) PHY 403 14 / 33

MCMC Efficiency

A number of issues have to be decided when running an MCMC:

1. What is the length of the burn-in period? I.e., when can we start
trusting the data?

2. When do we stop the Markov Chain? I.e., how do we know if we’ve
sufficiently sampled the parameter space?

3. How do we choose a suitable proposal distribution that gives a
reasonable acceptance rate for transitions xt → xt+1?

There is a large literature about optimizing Markov Chain Monte Carlo, as
you might imagine [2]. An MCMC that takes forever to burn-in or which
accepts few transitions isn’t worth much

Current state of the art: affine-invariant samplers [3], which are
implemented in the Python package emcee [4]

Segev BenZvi (UR) PHY 403 15 / 33

MCMC Parallelization

I There are various tricks to speed up
MCMC and ensure that it explores as
much of the parameter space as possible

I One common approach is to define
multiple chains (or “walkers”) that have
different starting points and proceed
independently

I If the sampled PDF is very peaked or
multimodal, this might still not be
enough to push explore all parts of the
parameter space. We’ll discuss how to
deal with that after the next example

Segev BenZvi (UR) PHY 403 16 / 33

Table of Contents

1 Sampling from PDFs in Many Dimensions
Markov Chain Monte Carlo
The Metropolis-Hastings Algorithm

2 Case Study: Sampling from a 1D Distribution
Burn-In
Autocorrelation
Efficiency and Detailed Balance

3 Sampling from a Joint Distribution
Parallel Tempering

Segev BenZvi (UR) PHY 403 17 / 33

Sampling from a Joint Posterior

Example
Now consider sampling from a joint distribution p(x1, x2|D, I) in two
parameters x1 and x2. The PDF is the sum of two 2D Gaussians and has a
double-peaked structure:

p(x1, x2|D, I) =
1
2

[N (µ1,Σ1) +N (µ2,Σ2)]

where µ1 = (0, 0), µ2 = (4, 3), and

Σ1 =

(
1 0
0 1

)
Σ2 =

(
2 0.8
0.8 2

)
For the proposal density function q, use a unimodal 2D Gaussian:

q(y |x) = N (µ = x ,Σq), Σq =

(
σ2 0
0 σ2

)
Segev BenZvi (UR) PHY 403 18 / 33

Sampling Distribution with σ = 0.1

Start at x0 = (−4.5, 8) with the width of the proposal PDF set to σ = 0.1.

Notice the very long autocorrelation time. Acceptance probability is ∼ 95%

Segev BenZvi (UR) PHY 403 19 / 33

Sampling Distribution with σ = 1

Start at x0 = (−4.5, 8) with the width of the proposal PDF set to σ = 1.

Faster convergence, with acceptance probability ∼ 60%

Segev BenZvi (UR) PHY 403 20 / 33

Sampling Distribution with σ = 10

Start at x0 = (−4.5, 8) with the width of the proposal PDF set to σ = 10.

Fast convergence, but acceptance probability is now ∼ 5%

Segev BenZvi (UR) PHY 403 21 / 33

Dealing with Multimodal Distributions

I The double-peaked Gaussian example showed that the MCMC can
become stuck in a local mode

I Recall: this is similar to the situation in parameter estimation when a
minimizer gets stuck in a local minimum

I The solution is to create a series of progressively “flatter” distributions
using a temperature parameter T (or β = 1/T). As T →∞ and
β → 0, the distribution will flatten and more of the paramter space
can be explored

I Given a posterior

p(x |D, I) ∝ p(x |I) p(D|x , I)

we can construct a flattened distribution using β ∈ [0, 1]:

π(x |D, β, I) = p(x |I) p(D|x , I)β = p(x |I) exp (β ln [p(D|x , I)])

Segev BenZvi (UR) PHY 403 22 / 33

Parallel Tempering

I With π(x |D, β, I), we can use a set of discrete values
β = {1, β2, . . . , βm} in parallel

I Parallel Tempering: multiple copies of the MCMC are run in parallel,
each with a different temperature βi

I As the simulations run, pairs of adjacent simulations on the
temperature ladder are allowed to swap their parameter states with
probability

r = min
{
1,
π(xt,i+1|D, βi , I) π(xt,i |D, βi+1, I)

π(xt,i |D, βi , I) π(xt,i+1|D, βi+1, I)

}
I Algorithm:

1. Propose a swap every ns iterations, and proceed with the swap if
u1 ∼ Uniform(0, 1) ≤ 1/ns

2. Randomly pick simulation i to swap its state with simulation i + 1
3. Accept the swap if u2 ∼ Uniform(0, 1) ≤ r

Segev BenZvi (UR) PHY 403 23 / 33

Bump Finding

Example
We have a 64-channel spectrum from a radio spectrometer with an
instrumental resolution of 2 channels and Gaussian noise of 1 mK per
channel. Is there a peak in the spectrum and what is its amplitude?

Segev BenZvi (UR) PHY 403 24 / 33

Bump Finding: Problem Setup

I If there is a bump in channel ν0 with amplitude A, we want to
calculate

p(A, ν0|D, I) ∝ p(D|A, ν0, I) p(A, ν0|I)

I A is a scale parameter and ν0 a location parameter, so it seems
reasonable to choose

p(A, ν0|I) = p(A|I)× p(ν0|I) =
1

A ln (Amax/Amin)
× 1
νmax − νmin

I Meanwhile, the likelihood is given by a product of Gaussians:

p(D|A, ν0, I) =
N∏
i=1

1√
2πσ

exp
{
−(di − Afi)

2

2σ2

}
, σ = 1 mK

fi = exp
{
−(νi − ν0)2

2σ2
L

}
, σL = 2

Segev BenZvi (UR) PHY 403 25 / 33

Results: Simple MCMC

I Putting it all together, we draw
random samples from
p(A, ν0|D, I) using the emcee
package [4]

I Simulation parameters:
1. 2 free parameters A, ν0
2. 20 MCMC “walkers”
3. 1000 samples

I The posterior PDF is shown at
left with the marginal
distributions of A and ν0

I Note that the first 100 samples
from each walker were treated as
burn-in data and ignored

Segev BenZvi (UR) PHY 403 26 / 33

Bump Finding: Burn-In

The time series of A and ν0 indicate burn in after 100 samples

The distribution of ν0 shows some multimodality; several walkers do not
converge to ν0 = 37. We can explore this more with parallel tempering

Segev BenZvi (UR) PHY 403 27 / 33

Parallel Tempering: T = 1, T = 7
Let’s try the same simulation with 4 parallel simulations, with T increasing
in powers of 7 between each simulation

Notice how p(A|D, I) loses its bump as T increases!
Segev BenZvi (UR) PHY 403 28 / 33

Parallel Tempering: T = 49, T = 343
As T goes up, the features in the PDF are getting washed out

The sampling distribution is becoming increasingly flat and the MCMC is
exploring the full parameter space

Segev BenZvi (UR) PHY 403 29 / 33

Parallel Tempering: Final Results
The combination of the four simulations shows significant multimodal
behavior in the PDF

Compare the final results (left) to our original MCMC (right)
Segev BenZvi (UR) PHY 403 30 / 33

Bump Finding: Best Fit
Plugging in Â ≈ 1.5 and ν̂0 ≈ 37 we get:

Next time: model comparison. We would like to estimate a Bayes factor
comparing the bump model to a null hypothesis where there is no bump

Segev BenZvi (UR) PHY 403 31 / 33

Summary

I MCMC is a general technique for generating parameter samples from
high-dimensional PDFs p(θ|D, I)

I Issues that affect MCMC calculations:
1. Estimating the length of the burn-in period
2. Deciding when to stop the Markov chain
3. Choosing a suitable proposal distribution

I For a given problem these issues are usually addressed by trial and
error. You tune q(y |xt) to get an acceptance rate of 25%− 50%, play
with the starting values x0, look at the results to assess burn-in, etc.

I There are also nice tricks like the use of walkers and parallel tempering
that help ensure your MCMC explores the full parameter space

I Coding up a Metropolis-Hastings problem is not hard, but be aware of
existing packages like emcee that make running MCMC much less of a
grind [4]

Segev BenZvi (UR) PHY 403 32 / 33

References I

[1] N. Metropolis et al. “Equation of State Calculations by Fast
Computing Machines”. In: J. Chem. Phys. 21 (1953), p. 1087.

[2] D. MacKey. Information Theory, Inference, and Learning Algorithms.
New York: Cambridge University Press, 2003.

[3] J. Goodman and J. Weare. “Ensemble Samplers with Affine
Invariance”. In: Comm. Appl. Math. Comp. Sci. 5 (2010), 65–80.

[4] D. Foreman-Mackey et al. emcee: The MCMC Hammer. 2013. URL:
http://dan.iel.fm/emcee/current/.

Segev BenZvi (UR) PHY 403 33 / 33

http://dan.iel.fm/emcee/current/

	Sampling from PDFs in Many Dimensions
	Markov Chain Monte Carlo
	The Metropolis-Hastings Algorithm

	Case Study: Sampling from a 1D Distribution
	Burn-In
	Autocorrelation
	Efficiency and Detailed Balance

	Sampling from a Joint Distribution
	Parallel Tempering

