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Evaluating Full Posterior Distributions

Recall the types of calculations we often have to do in a Bayesian analysis
(from [1]):

p(DIx,1) p(x|l) = p(D,x|l) = p(D|1) p(x|D, 1)

L(x) x m(x) = = Z x p(x)

likelihood x prior = joint = evidence X posterior
INPUT — = OUTPUT

To fully evaluate the posterior p(x) = £ (x)m(x)/Z we have to evaluate

integrals of the form
Z://.../dx L(x) m(x)

Often this can only be done numerically, so we need an efficient method of
calculating high-dimensional integrals

Segev BenZvi (UR) 2/18



Nested Sampling

» Nested sampling is another kind of technique useful for
high-dimensional integration and posterior sampling [2, 3]

» Advantages over MCMC: can handle pathologies in parameter spaces
such as strong non-linear correlations and requires fewer samples (up
to a factor 100 less) for evidence calculation

» The algorithm gives results that allow for model selection as well as
best parameter estimates at once

» Several packages available in Python [4, 5]

» Basic concept: use a likelihood ordering scheme to evaluate integrals

e Z://.../dx L(x) m(x)
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Basics of Nested Sampling

\‘\:1:3\
A

Sample N objects x with respect to the
prior such that £ (x) > L£*

Start with £* = 0, so that sampling
begins over the entire prior

We uniformly sample £(L£*), the
proportion of the prior with likelihood
greater than £*:

&LY) = // /7T(X) dx
L(x)>L*

Slowly increase L£* so that we end up
sampling in the high probability region
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Analogy: Riemann and Lebesgue Integration
The concept is similar to Lebesgue integration

Riemann

Lebesgue

Integrate

Integrate

Rather than partition the domain of £ into subintervals, we partition the
range of £ and integrate “up the hill”
=} = = E DA



Iteration Step

The algorithm in practice:

A >
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0 worst £* 1
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>
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— o
0 new £* 1
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>

Start with N objects restricted to £ < &*

Select the object with the largest £ (and
hence smallest £)

Use the worst object’s (&, £) as the new
(&%, L") and then toss out the worst
object

There are now N — 1 objects in the new
domain bounded by £*, which is nested
inside the old domain

Generate a new object inside the smaller
domain by uniformly sampling the prior
Restart the loop, and proceed until
L= Emax
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Calculation of Marginal Evidence
» The shrinkage ratio t = £/&* at each iteration is distributed as
p(t) = Nt"=1  with mean In(t) = (-1+1)/N
» At each iteration k,
k
Le=L and &=¢]]1
j=1
» Each shrinkage ratio is independently distributed according to p(t) so
Iné& = (—k = Vk)/N

» IfInt = —1/N then { = exp(—k/n), and we can evaluate

1
zz/0 L) dgzzkjhkﬁk,

where hy = 1 — &k = A&y
-



Generating Quantities from the Posterior Distribution

» Each sequence in the parameter space {xx} has an associated weight

b L
A

Wik
where hy = A&, and Z = > hy Ly

» The weights define the posterior PDF. Any quantity f(x) can be
generated from the posterior in the usual way:

() = wif(x)
k

() = wif*(xe)
k

var (f) = (%) — (f)
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Uncertainty in Z

» Given the estimate of Z, we can calculate the information or negative
entropy

H= [ pOmIp(©)] de ~ Z”"‘k B

~ (# active components in data) x In (signal/noise)

» If we count until k = NH then the accumulated values of In& are
subject to an uncertainty vVNH /N

» This uncertainty also applies to In Z, so that

InZ =~ In (th£k> +
k

» Convergence criterion: no rigorous approach. Use your judgment.
Typical: choose upper limit on the number of iterations

N
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Lighthouse Problem

Example

A lighthouse is somewhere off the coast at position « along the shore and
B3 out to sea. It emits a series of short collimated flashes at random
intervals (and hence, random azimuths)

Lighthouse

N flashes are detected at positions {xx} along the coast. Given the {x},
where is the lighthouse?
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Parameterization of the Lighthouse Problem

» Since the lighthouse emissions are random, the azimuth angle of the
kth emission is uniform over § = 4+90°:

P(9k|a,5, /) = 1/7T
» The azimuth angle is related to the position along the coast x, by
Btanf, = xx — «

» Change variables to find the likelihood of the x:

00y
p(Xk|Oé,,8, I) - P(0k|0¢76, I) 8Xk
o0
2
Y
(3 sec Gax

B[1 + tan? 0]% =4

x—a\?| 00
“( 5 ”521
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Parameterization of the Lighthouse Problem

» Using the Jacobian we find the likelihood of the xj:

B
[ﬂz + (% — @)?]

(Xk|a /87 )
X|Oé /Ba H,DX/(|O( /87

» What we really want is the posterior distribution of «:

pla, 81x, 1) = Zp(xlas 5,1) plo B11),

where we expect that p(«, 8|1) = p(a|l)p(B|1) is uniform:

Omax—min Bmax—Bmin

0 otherwise

1 1 . .
p(a, B)1) = { : 5, Qac [amln,amax],IB S [Bmlna/Bmax]
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Calculating the Likelihood

The likelihood we use for nested sampling is

- E
L(a, ) = kl:[lﬂ[52+(xk_a)2]
N
In£:InB—InW—Z(62+(Xk—a)2)
k=1

The algorithm we apply is:
1. Generate N values of o and 3 from the uniform priors
2. Calculate £ (or In L) using the N points and the {x}
3. Pick the value with the lowest £ and set it to £*

4. Use L* to estimate new limits o* and 3* and generate new values of
a and 3 subject to these limits. Proceed until termination
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Lighthouse Problem

Chooose « € [—2,2] and 3 € [0,2]. Update « and 8 with uniform steps
(easy to implement; could have used a Gaussian)
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(ar, B) moves from starting point (red star) to the region of highest
probability
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Sampling of the Posterior vs
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Best Estimate of «, 3

» Using the liklihood weights from each sample

 he Ly
- Z

Wi
we can get the mean « and 3:

() =) Wiy = 1.25£0.18 km
k

(B) = wiBk =1.01£0.20 km
k

» The estimate of the evidence InZ is
In(Z/km®) = —160.53 + 0.17

> Note that Z has dimensions of km® because of the 64 {x}
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Highly Multimodal Distributions

Handles very multimodal distributions like the eggbox function
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Note: the acceptance rate for points £ > L£* can be poor unless some
effort is made to split up the sampling region
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