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Last Time

» Probability density functions

» Summary Statistics:

Location parameters: mean, median, mode
Width parameters: variance, covariance
Higher-order moments: skew, kurtosis
Ordered rank statistics: percentiles

The cumulative distribution function
Histograms
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Last Time
The 68-95-99 Rule
In physics we tend to express rare events in terms of the tails of the

Gaussian PDF
1 1 (x—pu 2
pall) = Tmexp{ 3 (5 )}

Normal Distribution

04 The “68-95-99” quantile rule:

> 68.27% of the data are within
10 of the mean.

02 » 95.45% of the data are within

20 of the mean.

> 99.73% of the data are within
00 | 30 of the mean.

0.3

p(x|1)

0.1
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Reading for Today

» Cowan: Chapter 2
» Numerical Recipes in C: Chapter 7
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Binomial Distribution

» Bernoulli trials — i.e, binary measurements which result in
“success” with probability p and “failure” with probability 1 —p
— are described by the binomial distribution.

» In n trials, like a coin toss, the probability of m “heads” is

prt—p""

» If we don’t care about the order of the successes, then there are
»Cm ways to get m successes in m trials. Therefore,

n!

p(m|n,p) = mpma —-p)"
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Binomial Distribution

The binomial PDF is a discrete distribution:
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Note how the binomial looks increasingly Gaussian as n — large.
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Binomial Distribution
Mean

The mean of the binomial distribution is

() = Y e (1= )
LM .
< n—1)! m— n—m
:”pn;(m—(m(n)—m)!” (1-p)

where we simply used the fact that p(m|n, p) is normalized over the
sum from m = 0 to n.
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Binomial Distribution

Variance
To find var (m), note that

n

(m(m—1)) = Zom(m -1)- m!(n”i m)[pm(l —p)nm
=n(n—1)p° m/Z::o mpml(l —p)"

(o — ) = (o — 1)
where m’ = m — 2, n' = n — 2, and the sum is 1. Therefore,

var (m) = (m?) — (m)* = (m* —m) + (m) — (m)?
= n(n—"1)p* +np — (np)*
=np(l—p)
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Binomial Distribution

Detector Efficiencies

Example

You measure the tracks of cosmic ray particles using a stack of silicon
detectors which are 95% efficient. You decide that 3 points are needed
to define a track. How efficient is a stack of 3 layers? What about 4, or
5?
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Binomial Distribution

Detector Efficiencies

Example

You measure the tracks of cosmic ray particles using a stack of silicon
detectors which are 95% efficient. You decide that 3 points are needed
to define a track. How efficient is a stack of 3 layers? What about 4, or
5?

P(3]p = 0.95,n = 3) = 0.95° = 0.857
P(3+4p=095n=4)=P(3|...)+P(4]...)

4!
= —0.95%0.05 + 0.95* = 0.986

- 31!
P(3+4+5p=095n=5)=P3|...)+P4]...)+P(5|...)

= ﬁ0.95 0.05% + MO'% 0.05 + 0.95

= 0.999
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Multinomial Distribution

Generalization of the Binomial Distribution

» If instead of two outcomes we have k, we can generalize the
binomial distribution to the multinomial distribution:

nt £
p(my,my, ..., m|n,p1,p2, ..., pk) = T mi [

i=1

where

D~
=

I
=
]
E

I

=

i=1 i=1

» The multinomial is a joint probability distribution over the {m;}.

Example

Example: binned data. If you sample trials from a PDF and bin the
results, the predicted counts in each bin will follow a multinomial
distribution.
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Poisson Distribution

» The Poisson distribution is a limiting case of the binomial
distribution (n — oo, p — 0, (m) — finite).
» It applies when we observe particular outcomes but without
knowledge of the number of trials. For example:
» Number of lightning strikes in a thunderstorm
» Number of supernova explosions in the Galaxy per century
» Suppose that on average A events are expected to occur in some
interval of length T. Le., the events occur at constant rate R such
that A = RT.

» If we split the interval up into 7 sections so that in each section we
observe 0 or 1 events, the probability of observing an event in a
section is p = A/n, and the total number of events in the interval
follows a binomial distribution:

n!

il —m? P

plmlp = A/nm) = o
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Poisson Distribution
Letting n — co we find that

. n! A" AN
plmlp = A/mm) = lim (;) (1 - E)
The factorials reduct to a power of 7 in the large n limit:

n!

S B B B .
nlgr.}o(n_m)! nlgr.}on(n n—=2)...n—m+1)—n

And we use the definition of the exponential:

/\ n—m n
lim (1 — —> — (1 — &> e
n—o0 n n

Combining the terms, we get the Poisson distribution:

e—AAm

plm|A) = —1
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Poisson Distribution
The Poisson PDF is also discrete distribution:
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Note how the Poisson distribution looks increasingly Gaussian as
A — large.
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Poisson Distribution
Mean

The mean of the Poisson distribution is

00 my—A
(m) = m)t e
=0 m!
00 /\mfl
= Ae !
,,;1 (m—1)!
A mAr —A A
= A ZO p—r = Ae™ e
m!' =
=A

where we used the fact that the sum is the expansion of et
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Poisson Distribution
Variance
To find the variance var (m), we start with

o) mef)\
(1)) = Y- mOm 1) 25

As with the binomial distribution, drop the first two terms and set
m' =m—2to get

2 A _
(m —m) = A% Zm/'_

Therefore, the variance is

var (m) = (m*) — (m)* = (m* —m) + (m) — (m)?
= A+ A-A
=A
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Poisson Distribution
HEP Example

Example
Suppose you try to measure a cross-section ¢ for a process.
> You observe n events for an integrated luminosity of L.
» For this luminosity, the expected number of events is v = ¢ L.

» The observed number of events will be Poisson-distributed
according to v.

Our best estimate of v is the number of observed events: ¥ = n. For a
Poisson distribution, the variance is equal to the mean, so uncertainty
on our estimate is given by

t=ntvn = 6=0/L=mnxtn)/L

v

Note: \/n is the estimated uncertainty of the underlying Poisson mean,
not the uncertainty on n. There is no “error” on n, unless you
miscounted!
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Poisson Distribution
Neutrino Counts in Short Time Intervals
Example

From Barlow [1]: the number of neutrinos detected in 10-second
intervals by the IMB detector on 23 February 1987 was:

No. events 0 1 2 3 4 516|789
No. intervals | 1042 | 860 | 307 | 78 [ 15 [ 3 | 0| 0| 0 | 1

The prediction comes from a Poisson distribution with A obtained by
calculating the weighted average

8 0-1042+1-860+...

8
n=A= Ci ;= =0.77
" l.;owlc’/ AT 042 4 860 + - .

Given this mean, the expected Poisson counts are given by

[ Prediction | 1064 | 823 [ 318 [ 82 [ 16 | 2 [ 0.3 [ 0.03 | 0.003 | 0.0003 |
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Combining Poisson Variables

Sum
The sum of two independent Poisson-distributed variables x and y is

itself a Poisson variable z. To see this, first consider the joint
probability of x and y:
e M pAxeMAY e () N )Y
p(x/ny/ )\y) = p(xle)p(yl/\y) = x! * y! ! = x!y! >y

Now, to find p(z|A;), sum p(x,y) over all (x,y) satisfying x +y = z:

—(Ax+A )/\xAz x

pr) =Y

= xl(z—x)!
e~(athy) 2 ZIAZATY
Tz =xl(z— x).
—(Axt+Ay)

= Z—(A +Ay)%, by the binomial theorem
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Combining Other Variables

Rules of the road:

» The sum of two Poisson variables is also a Poisson variable, even
if the means are different.

» The sum of two Gaussian variables is a Gaussian, even if the
means and variances are different.

This is not true for the binomial distribution. In this case:
mean = np1 + Npy, variance = np1(1 — p1) + Np2(1 — p2)

This does not have the general form of the binomial distribution unless
p1 = p2. Also note:

» The difference of two Poissons is not Poisson; it follows a Skellam
distribution.

» Beware of other false assumptions. E.g., the ratio of two
Gaussians is not another Gaussian!

Segev BenZvi (UR) 21/34



Gaussian Distribution

> You are already familiar with the Gaussian PDF:

_ 1 _a-p?
plalin,o) = e (U1

The Gaussian is the limiting case of the Poisson distribution
(A — o0) and the binomial distribution (n — o).
Rules of thumb:
» Poisson is a good approximation of binomial if n > 20 and p < 0.05.

» Gaussian is a good approximation of Poisson if A > 20.
» Gaussian is a good approximation of binomial if np(1 — p) > 9.

v

v

\4

So basically the Gaussian is usually “safe” for large numbers, but
beware of using it in the wrong situation.

v

The Gaussian has smaller tails than many other distributions and
misusing it can cause you to overestimate the significance of rare
events.
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Central Limit Theorem

» Why is the Gaussian so important? Because of the Central Limit
Theorem.

\{

Theorem: the sum of n independent continous random variables
x; with means y; and variances 0’1-2 becomes a Gaussian with mean

and variance
_ , 2 2
n=Ywuw F=Yo

n
=1

Il
—_

in the limit n — oo.

v

See Cowan [2] for a proof based on characteristic functions

v

Generally, this is true independent of the individual forms of the
PDFs of the x; (see next slide).

Since it is common for many measurements to add together in
experiment, the Central Limit Theorem justifies the use of the
Gaussian in many cases.

v
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Central Limit Theorem

Generator: Normal Generator: Uniform  Generator: Exponential

S
A
A

-
ddi

n =230 n =30

-
r
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Multidimensional Gaussian

» The k-dimensional generalization of the Gaussian is

) = e () B )

» In this expression, x = (x1,x,...,Xx) is a vector with mean
"l == (l’lll ,MZI e r]’lk)'
» L is the covariance matrix of the Gaussian. Its diagonal elements

are the variances of the x;, and its off-diagonal elements are the
covariances cov (x;, x;).

Example

Binormal distribution: for k = 2, X is a 2 x 2 real symmetric matrix:

2
() ) ()
Y Hy xy Uy
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Change of Variables

» The covariance matrix fully
specifies any correlations or
anti-correlations between the
elements of x.

» If all of the elements of x are
independent, then the 3
covariance matrix is diagonal.

» If correlations exist, then there
is a unitary matrix U that we
can identify to diagonalize X. :
Le. ’ -2 -2

X =uzu'. w5 3 53

(@%«

NS

» It is often convenient to
change variables to X'
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Uniform Distribution

» The uniform (a.k.a. the “top hat” distribution) has a probability
which is constant inside some range [a, b] and zero outside:

1 oa<x<b
xlg, by =4 ba T =7 =
P(| ) {O else

Mean: (x) = (a+b)/2
Variance: var (x) = (b —a)?/12
Standard deviation: oy, = (b —a)/v/12

The uniform distribution is important for two reasons:

1. Itis the basis for a large number of pseudorandom number
generators.

2. Its constant probability indicates no preferred values inside the
range [a, b], making it a popular “objective” prior probability
density in Bayesian calculations.

vV vy VYV
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x? Distribution
» The x? distribution of the continuous variable z is

Zn/2—1e—z/2’

_ 1
P(z|n) - Zn/zl—v(n/z)

where I' is the gamma function:

I'(x) =/ e ' ldt
0

Note: I'(x+ 1) = xI'(x), and ['(1/2) = /7. For integer x,
I'(x+1)=xl
Mean: E (x) =n

Variance: var (x) = 2n

v

\4

v

v

The simple variance and mean of the x? distribution make its tail
probabilities easy to estimate.
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x? Distribution

» For n independent Gaussian x;

with means y; and variances 05 )
. — n=
07, the quantity o
0.41 —— n=4
" () — =0
S Vi
i=1 i 2031
follows a x? with n degrees of E
[<}
freedom. 8021
» Notice that z looks like a
least-squares estimator for a 011
fit.
» Physicists often use the tail 00 ‘ : ‘
probability of x? as a measure 0 5 10 15 20

of goodness of fit.
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Using the x? Distribution
Example from S. Oser, UBC

Example

You are shown a fit and told that x? is 70 for 50 degrees of freedom. Is
the fit any good? In other words, how likely is it that x* could be this
large by chance?
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Using the x? Distribution
Example from S. Oser, UBC

Example

You are shown a fit and told that x? is 70 for 50 degrees of freedom. Is
the fit any good? In other words, how likely is it that x* could be this
large by chance?

Roughly: we expect the mean to be n = 50, and the variance is

2n = 100 with RMS /100 = 10. So this is a 2¢ effect, which happens
~ 2.5% of the time if we approximate using the Gaussian definition of
o.

» If x> > n, then either your model is not a good fit to the data or
you badly understimated your uncertainties ;.

» If x?> < n, you should also be suspicious. You might have
overestimated your uncertainties.
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A Warning about Using the x? Distribution

» Warning: the x? statistic z is only asymptotically distributed like a
x> distribution if the uncertainties on each x; are Gaussian.

» Where this can hurt you: fitting binned data.

0.4
500

I
W

400

PDF p(x|I)
I
o
count
w
=1
S

200

o
s

100

=3
=3

» Remember that if your histogram bins are relatively full the
uncertainties on the counts in each bin will be Gaussian

» But if the bins are empty or close to empty, the uncertainties in the
counts will be Poisson, and z will not follow the x? distribution!
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Exponential Distribution

» The exponential PDF is

1.0

p(x|A) = i A x>0 —
0.8 -

» Mean: E (x) = A

» Variance: var (x) = A%, RMS:
A

» Lack of memory:
p(t —tolt > to, A) = p(t[A).

» Decay time of unstable
particle with lifetime A — 7

=N =

> > > >
(=}

p(x[A)

» Lifetime of electrical
components, such as
lightbulbs )
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Power Law (Pareto) Distribution

» Power law:
Sclentific American, (c) 1998
1PARTICLE

PER SQUARE
METER PER SECOND

p(x|a) = Cx™*

» The power law shows up all
over physics, and is
characteristic of scale
invariance, hierarchy, or
stochastic generating

1 PARTICLE
PER SQUARE

processes. ngggﬁg
» Examples: populations of ”;gﬂ”f;:

RELATIVE PARTICLE FLLIX (LOGARITHMIC LMITS)

cities, sizes of lunar impact
craters, energies of cosmic
rays, sizes of interstellar dust
particles, magnitudes of
earthquakes, . ..

JENNIFER C.CHRISTIANS EN

1010 1012 101+ 1pl8 018 1020
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Further Reading I

[1] R.J. Barlow. Statistics: A Guide to the Use of Statistical Methods in the
Physical Sciences. New York: Wiley, 1989.

[2] Glen Cowan. Statistical Data Analysis. New York: Oxford
University Press, 1998.
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