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I Binomial Distribution
I Poisson Distribution
I Gaussian Distribution
I Central Limit Theorem
I Uniform Distribution
I χ2 Distribution
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χ2 Distribution
Using χ2 to Estimate “Goodness of Fit”

I For n independent Gaussian xi
with means µi and variances
σ2

i , the quantity

z =
n

∑
i=1

(xi − µi)
2

σ2
i

follows a χ2 with n degrees of
freedom.

I Notice that z looks like a
least-squares estimator for a
fit.

I Physicists often use the tail
probability of χ2 as a measure
of goodness of fit.
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Exponential Distribution

I The exponential PDF is

p(x|λ) = 1
λ

e−x/λ, x ≥ 0

I Mean: E (x) = λ.
I Variance: var (x) = λ2, RMS:

λ

I Lack of memory:
p(t− t0|t ≥ t0, λ) = p(t|λ).

I Decay time of unstable
particle with lifetime λ→ τ

I Lifetime of electrical
components, such as
lightbulbs
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Power Law (Pareto) Distribution

I Power law:

p(x|α) = Cx−α

I The power law shows up all
over physics, and is
characteristic of scale
invariance, hierarchy, or
stochastic generating
processes.

I Examples: populations of
cities, sizes of lunar impact
craters, energies of cosmic
rays, sizes of interstellar dust
particles, magnitudes of
earthquakes, . . .
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Negative Binomial Distribution

I The negative binomial
describes the number of
successes in Bernoulli trials up
to r failures

I The discrete PDF (actually,
PMF) is(

k + r− 1
k

)
pk(1− p)r for k = 0, 1, 2, . . .

I Mean: pr/(1− p)
I Variance: pr/(1− p)2

I Used in place of the Poisson
distribution when sample
variance > sample mean
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Negative Binomial Distribution

Example
Selling cookies (from Wikipedia): a Girl Scout is required to sell boxes
of cookies to get a merit badge. There are 30 houses in her
neighborhood, and she needs to sell 5 boxes before returning home.

If there is a 40% chance of selling a box at any given house, what is
the probability of selling the last box at the nth house?

The negative binomial describes the probability of k failures and r
successes in k + r trials with success on the last trial. Setting r = 5,
p = 0.4, and n = k + 5, we can write

P(k|r, p) =
(

k + r− 1
k

)
pk(1− p)r,

P(n|r = 5, p = 0.4) =
(
(n− 5) + 5− 1

n− 5

)
0.450.6n−5 =

(
n− 1
n− 5

)
25 3n−5

5n
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Negative Binomial Distribution

Example

What is the probability that the Girl Scout finishes on the 10th

house?

p(n = 10|r = 5, p = 0.4) =
(

9
5

)
25 35

510

≈ 0.1
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Negative Binomial Distribution

Example

What is the probability that the Girl Scout finishes on or before the
8th house?

She needs to sell 5 boxes, so she must finish at house 5, 6, 7, or 8.
Therefore, we sum over these possibilities:

P(n ≤ 8|r, p) =
8

∑
m=5

P(m|r, p)

= P(5|r, p) + P(6|r, p) + . . . + P(8|r, p)
≈ 0.010 + 0.031 + 0.055 + 0.077
≈ 0.173
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Negative Binomial Distribution

Example

What is the probability that the Girl Scout does not sell all her boxes
after visiting the whole neighborhood?

We want the probability that she does not finish on houses 5 through
30. The probability that she does finish by the last house is

P(n ≤ 30|r, p) =
30

∑
m=5

P(m|r, p) ≈ 0.998.

Therefore, the probability that she does not finish is, by the sum rule,

1− P(n ≤ 30|r, p) = 1−
30

∑
m=5

P(m|r, p) ≈ 0.001
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Transformation of Variables

I It is often convenient to change variables when managing PDFs
I E.g., we have some p(x|I) and we define y = f (x), so we need to

map p(x|I) to p(y|I)

I Probability for x to occur between x and x + dx must equal the
probability for y to occur between y and y + dy
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Transformation of Variables

I Consider a small interval δx around x′ such that

p(x′ − δx
2
≤ x < x′ +

δx
2
|I) ≈ p(x = x′|I) δx

I y = f (x) maps x′ to y′ = f (x′) and δx to δy. The range of y values
in y′ ± δy/2 is equivalent to a variation in x between x′ ± δx/2,
and so

p(x = x′|I) δx = p(y = y′|I) δy

In the limit δx→ 0, this yields the PDF transformation rule

p(x|I) = p(y|I)
∣∣∣∣dy
dx

∣∣∣∣
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Transformation of Variables
More than One Variable

I For more than one variable,

p({xi}|I) δx1 . . . δxm = p({yi}|I) δmvol({yi})

where δmvol({yi}) is an m-dimensional volume in y mapped out
by the hypercube δx1 . . . δxm

I The m-dimensional equivalent of the 1D transformation rule is

p({xi}|I) = p({yi}|I)
∣∣∣∣∂(y1, . . . , ym)

∂(x1, . . . , xm)

∣∣∣∣
where the rightmost expression is the Jacobian matrix of partial
derivatives dyi/dxj
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Polar Coordinates

Example
For x = R cos θ and y = R sin θ,∣∣∣∣ ∂(x, y)

∂(R, θ)

∣∣∣∣ = ∣∣∣∣cos θ −R sin θ
sin θ R cos θ

∣∣∣∣ = R(cos2 θ + sin2 θ) = R

Therefore, p(R, θ|I) is related to p(x, y|I) by

p(R, θ|I) = p(x, y|I) · R

E.g., 2D Gaussian→ Rayleigh distribution in R:

p(x, y|I) = 1
2πσ2 exp

{
−x2 + y2

2σ2

}
=⇒ p(R, θ|I) = R

2πσ2 exp
{
− R2

2σ2

}
We have just equated the volume elements dx dy = R dR dθ.
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Applications

I We can imagine various situations in which these transformation
rules are useful

I When measuring a quantity x, we can use the transformation to
calculate the PDF of a derived quantity y (error propagation)

I In a problem of several variables x, y, . . ., we might want to
transform/rotate from coordinates with strong correlations to
new variables x′, y′, . . . without correlations

I When sampling from a PDF it is quite convenient to transform
from a PDF that is easy to generate to one that is more difficult

I We will discuss this in detail next class when we cover basic
Monte Carlo techniques
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Generating Discrete Random Variables

I A probability generating function is a power series representation
of the PMF of a discrete random variable

I These are not used in data analysis
I However, they are important in various branches of mathematics
I You may also see probability generating functions used in some

calculations in statistical mechanics
I Note: the term is not universal, so your Stat Mech textbook may

use such series but not refer to them as generating functions
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Definition of a Generating Function

I Given a sequence of numbers ai : i = 0, 1, 2, . . ., the generating
function of the sequence is defined as the power series

G(s) =
∞

∑
i=0

aisi

for those values of s where the sum converges.
I For a given sequence, there exists a radius of convergence R ≥ 0

s.t. the sum converges absolutely for |s| < R.
I G(s) may be differential or integrated term by term any number of

times when |s| < R.
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Probability Generating Function

I Consider a count random variable X ∈N

I The probability that X is a given nonnegative integer k is

pk = P(X = k), k = 0, 1, 2, . . .

I The probability generating function (PGF) of X is

GX(s) =
∞

∑
k=0

pksk = E (sX).

I Define: GX(0) = p0.
I Since GX(1) = 1, the series converges absolutely for |s| ≤ 1.
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A Couple of Basic Properties

1. GX(0) = p0 = P(X = 0).
2. GX(1) = P(X = 0) + P(X = 1) + P(X = 2) + . . . = ∑r P(X = r) =

1.

Example
The generating function for a fair die is

G(1) = 0 +
1
6
+

1
6
+

1
6
+

1
6
+

1
6
+

1
6
= 1
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PGF of Constant Distribution

Example
Imagine if X is a constant or degenerate random variable – e.g., we roll
a two-headed coin, or toss a die where all the faces are the same, so
that

pc = P(X = c) = 1,
pk = 0 for k 6= c.

In this case, the PGF of X is

GX(s) = E (sX) = sc.
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PGF of Bernoulli and Binomial Trials
For a Bernoulli random variable which takes value 1 with probability p
and value 0 with probability q = 1− p,

p0 = 1− p = q,
p1 = p,
pk = 0 if k 6= 0 or 1,

GX(s) = E (sX) = q + ps.

For a binomial random variable X,

GX(s) = (q + ps)n.

For a Poisson random variable,

GX(s) =
∞

∑
k=0

1
k!

λke−λsk = eλ(s−1)
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Moments of the PGF
Given the PGF GX(s) we can obtain pk = P(X = k) in two ways:

1. Expand GX(s) in a power series and set pk = coefficient of sk.
2. Differientiate GX(s) k times with respect to s and set s = 0.

The moments of a discrete random variable can be expressed in terms
of the rth derivative of GX(s) at s = 1. I.e.,

G(r)
X (1) = E [X(X− 1) . . . (X− r + 1)]

Example: first two moments of X

G(1)
X (1) = G′X(1) = E (X)

G(2)
X (1) = G′′X(1) = E [X(X− 1)]

= E (X2)− E (X) = var (X) + E (X)2 − E (X)

∴ var (X) = G(2)
X (1)− [G(1)

X (1)]2 + G(1)
X (1).
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Moments of the Poisson Distribution

Example
If X is a Poisson random variable, then

GX(s) = eλ(s−1)

G(1)
X (s) = λeλ(s−1)

G(2)
X (s) = λ2eλ(s−1)

Therefore,

E (X) = G(1)
X (1) = λe0 = λ,

var (X) = λ2 − λ2 + λ = λ.
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