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Reading

I Sivia: Ch. 2
I Cowan: Ch. 5
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Last Time: The Odds Ratio

To select between two models, it is useful to calculate the ratio of the
posterior probabilities of the models. This is called the odds ratio:

Oij =
p(D|Mi, I)
p(D|Mj, I)

p(Mi|I)
p(Mj|I)

= Bij
p(Mi|I)
p(Mj|I)

The first term is called the Bayes Factor [1, 2] and the second is called
the prior odds ratio. Interpration:

I Prior odds: the amount by which you favor Mi over Mj before
taking data. There is no analog in frequentist statistics.

I Bayes Factor: the amount that the data D causes you favor Mi
over Mj. Frequentist analog: likelihood ratio (but frequentists
can’t marginalize nuisance parameters)
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Last Time: Occam Factors

I We can express any likelihood of data D given a model M as the
maximum value of its likelihood times an Occam factor:

p(D|M, I) = LmaxΩθ

I The Occam factor corrects the likelihood for the statistical trials
incurred by scanning the parameter space for θ̂.

I Occam’s Razor: when selecting from among competing models,
generally prefer the simpler model

I Statistical Trials: it becomes harder to reject the “null hypothesis”
when the number of hypotheses in a test becomes large.

Example
You have a histogram and look for a spike in any one bin. The
look-elsewhere effect: any bin could be a background fluctuation.
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Principle of Indifference
As a general rule, we want priors that do not inadvertently push us
toward a result. We want non-informative priors. Principle of
Indifference: given n > 1 mutually exclusive and exhaustive
possibilities, each should be assigned a probability equal to 1/n.

Example
Drawing from a deck of cards, we apply the principle of indifference
and assume the probability of selecting a given card is 1/52.

Example
Rolling dice with n faces, we assume the die lands on one face
(exclusive possibility) with probability 1/6.

Example
Statistical mechanics: any two microstates of a system with the same
energy are equally probable at equilibrium.
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Principle of Indifference
Continuous Location Parameter

I Consider an event that we locate with respect to some origin (a
“location parameter”

I Example: we are interested in p(X|I), where X =“the tallest tree in
the woods is between x and x + dx.”

I In the problem, x is measured with respect to some origin. What if
we change the origin so that

x→ x′ = x + c

I In the limit of complete ignorance, our choice of prior must be
completely indifferent to shifts in location. This implies

p(X|I) dX = p(X′|I) dX′ = p(X′|I) d(X + c) = p(X′|I)dX
∴ p(X|I) = constant
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Uniform Prior
Continuous Location Parameter

I If we have upper and lower bounds on x (we know the
dimensions of the woods), then

p(X|I) = constant =
1

xmax − xmin
,

the uniform prior we have already used a few times.
I If the bounds xmin and xmax are not known, then technically p(X|I)

is not normalized. It is called an improper prior.
I Note 1: improper priors can be used in parameter estimation

problems, as long as the posterior distribution is normalized.
I Note 2: improper priors cannot be used in model selection

problems, because the Occam factors depend on knowing the
prior range for each model parameter.

Segev BenZvi (UR) PHY 403 9 / 36



Principle of Indifference
Continuous Scale Parameter

I Consider a problem where we are interested in the mean lifetime
of a particle. Lifetime is a scale parameter because it can only have
positive values.

I We are interested in p(T |I), where T =“the “mean lifetime is
between τ and τ + dτ.”

I In the limit of complete ignorance, our prior must be indifferent to
changes in scale β, e.g., if we change our time units τ → τ′ = βτ:

p(T |I) dT = p(T ′|I) dT ′ = p(T ′|I) d(βT ) = βp(T ′|I) dT

If we represent the PDF by g(τ), then

g(τ) = βg(τ′) = βg(βτ) =⇒ g(τ) = constant/τ
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Jeffreys Prior
Continuous Scale Parameter

I Since g(τ) ∝ 1/τ, we must also have

p(T |I) ∝
1
τ

I This form of the prior is called the Jeffreys prior [1].
I If we have upper and lower bounds on τ then

p(T |I) = 1
τ ln (τmax/τmin)

I The Jeffreys prior is very convenient for problems in which we are
ignorant about scale. It provides logarithmic uniformity via equal
probability per decade. Using a uniform prior in this case would
cause you to weight your PDF toward the highest decade
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Modified Jeffreys Prior

I The Jeffreys prior is not
normalizable if a scale parameter
like τ can be zero.

I Alternative (from S. Oser): the
modified Jeffreys prior, which
becomes uniform for τ < a:

p(T |I) = 1
(τ + a) ln ((a + τmax)/a)
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Caution: Parameterization Matters
Example from S. Oser

Two theorists predict the mass of a new particle:

1. A: There should be a new particle whose mass is between 0 and 1
in rationalized uints. Having no other knowledge about the mass,
assume it has equal chance of being between 0 and 1: p(m|I) = 1.

2. B: There is a particle described by a free parameter y = m2. The
true value of y must lie between 0 and 1, but otherwise having no
knowledge about it, p(y|I) = 1.

Both statements express ignorance about the same theory, but with
different parameterizations. By the transformation rule,

p(y|I) = p(m|I)
∣∣∣∣dm

dy

∣∣∣∣ ∼ 1√
y

Uh oh: transformation of variables makes a uniform prior
non-uniform.
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Estimators

I We have seen how the PDF encodes what we want to know about
a parameter given data D and relevant background information I.

I An estimator is a summary of this distribution
I Could be a parameter of the PDF. E.g., p for a binomial distribution
I Could be a property of the distribution, like the mean

I You have total freedom to make up any estimator you want, but
you’ll want to report two numbers:

1. The best estimate itself
2. A measure of the reliability of the estimate

I Question: what do we mean by “best” estimator?
I Question: what do we mean by the “reliability” of the estimator?
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Bayesian vs. Frequentist Interpretations
I Bayesian: given D, the uncertainties tell us that the true value of

the parameter lies within the ellipse centered on the observation
with some probability

I Frequentist: given the true value of the parameters, the
observation lies within an error ellipse centered on the true value
with some probability
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What is a Best Estimator?

I Let’s answer the question of what defines a best estimator.
I Intuitive: it should be where the posterior PDF p(x|D, I) is a

maximum, meaning
dp
dx

∣∣∣∣
x̂
= 0

For this to be a maximum, we also require that

d2p
dx2

∣∣∣∣
x̂
< 0

I If x̂ gives the best estimator, then how do we define the reliability
of the estimator?

I Look at the behavior of the PDF in a small region around the peak.
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Reliability of an Estimator?

I Let’s look at the Taylor expansion of p about x̂, or better yet, ln p:

L = ln p = ln p(x|D, I)

I We use the logarithm because p will often be a “peaky” function
of x near x̂. L varies more slowly and is a monotonic function of p.

I Taylor expanding L about x̂, we get

L = L(x̂) +
1
2

d2L
dx2

∣∣∣∣
x̂
(x− x̂)2 + . . .

I The first term is a constant. The linear term vanishes (we’re at the
maximum). So the quadratic term dominates, and

p(x|D, I) ≈ A exp
[

1
2

d2L
dx2

∣∣∣∣
x̂
(x− x̂)2

]
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Reliability of an Estimator?
I Compare the Taylor-expanded posterior PDF

p(x|D, I) ≈ A exp
[

1
2

d2L
dx2

∣∣∣∣
x̂
(x− x̂)2

]
to the Gaussian

p(x|µ, σ2) =
1√
2πσ

exp
[
− (x− µ)2

2σ2

]
I We can identify the width of the Gaussian as

σ =

(
−d2L

dx2

∣∣∣∣
x̂

)−1/2

with d2L/dx2 < 0 (we’re at the maximum). Hence, we express the
parameter as

x = x̂± σ,

where x̂ is the best estimate and σ is its reliability.
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Accuracy and Precision
Frequentist Aside

I It is useful to think of an estimator in terms of accuracy and
precision

I Accuracy: how close is the estimator to true value? (Systematics)
I Precision: how clustered is the estimator about a central value?

(Variance/Statistics)
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Consistency and Bias
Caution: Frequentist Concept

I In the context of a sample of N measurements, we say that an
estimator of θ, called θ̂, is consistent if

lim
N→∞

P(|θ̂ − θ| > ε) = 0, ∀ ε > 0

I.e., θ̂ converges to θ in the large N limit.
I We call an estimator unbiased if the bias b

b(θ) = E (θ̂)− θ

is zero.
I An estimator can be biased even if it is consistent. If θ̂ → θ for an

infinite set of measurements in one experiment, it is not
necessarily true that θ̂ → θ in an infinite set of experiments with a
finite number of measurements.
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Mean Squared Error (or Deviation)

I It is helpful to think of bias as a systematic error which does not
improve with more data

I Another popular measure of the quality of an estimator is the
mean squared error, defined as

d = MSE = E ((θ̂ − θ)2)

= E ((θ̂ − E (θ̂))2) + (E (θ̂)− θ)2

= var (θ̂) + b2

I I.e., the mean squared error (MSE) is the sum of the variance and
the square of the bias.

I Classical interpretation: since the variance is the square of the
uncertainty in the estimator, the MSE is the quadrature sum of
statistical and systematic uncertainties.

I Root mean square (RMS) is defined as
√

MSE.
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What Makes a Good Estimator?
Let’s define the three properties we expect from a good estimator.

1. Consistent: a consistent estimator will tend to the true value as
the amount of data approaches infinity:

lim
N→∞

θ̂ = θ

2. Unbiased: the expectation value of the estimator is equal to the
true value, so its bias b vanishes:

b = 〈θ̂〉 − θ =
∫

dx p(x|θ) θ̂(x)− θ = 0

3. Efficient: the variance of the estimator is as small as possible
(we’ll see how small when we discuss the method of maximum
likelihood):

var (θ̂) =
∫

dx p(x|θ) (θ̂(x)− θ̂)2

MSE = 〈(θ̂ − θ)2〉 = var (θ̂) + b2

It is not always possible to satisfy all three requirements.
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Case Study: Efficiency Uncertainty
Example
Suppose you use simulation to determine a selection efficiency: n out
of N events pass some cuts. What is the selection efficiency ε and its
uncertainty?
This is a binomial process: fixed trials N, fixed successes n, probability
of success ε. Therefore,

p(n|N, ε) ∝ εn(1− ε)N−n

and

L = ln p = constant + n ln ε + (N− n) ln (1− ε)

dL
dε

=
n
ε
− N− n

1− ε

d2L
dε2 = − n

ε2 −
N− n
(1− ε)2
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Case Study: Efficiency Uncertainty

Example
For the optimal value of ε, dL/dε = 0:

dL
dε

∣∣∣∣
ε̂

=
n
ε̂
− N− n

1− ε̂

∴ ε̂ =
n
N

This is a pretty intuitive result: the best estimate of the efficiency is just
n/N. Mixing in a frequentist concept: is it biased?

b = E (ε̂)− ε =
E (n)

N
− ε =

Nε

N
− ε = 0

So ε̂ is an unbiased estimator.
What about its uncertainty?
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Case Study: Efficiency Uncertainty
Example
The estimated variance is given by

σ̂2 = −
(

d2L
dε2

∣∣∣∣
ε̂

)−1

After substituting ε̂ = n/N and combining terms, this reduces to

d2L
dε2

∣∣∣∣
ε̂

= − N
ε̂(1− ε̂)

∴ σ̂2 =
ε̂(1− ε̂)

N
=

n(N− n)
N3

The expectation of σ̂2 is, after some more algebra,

E (σ̂2) =
N + 1

N
σ2 (slight bias)
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Asymmetric PDFs
I What happens when we have a very asymmetric PDF? In this case

the expansion about the maximum may not be so reasonable.

I This is where the concept of confidence intervals (or “credible
regions” for a Bayesian) come in. We define

p(x1 ≤ x < x2|D, I) =
∫ x2

x1

p(x|D, I) dx ≈ α,

where α = 0.68 (for example), and identify x1 and x2.
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Multimodal PDFs
I What happens when we the PDF is multimodal? Can we even

describe a “best parameter” and its uncertainty properly?
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I You could try to summarize the posterior using ≥ 2 best estimates
and their error bars, or some kind of disjoint confidence interval.

I Alternatively: cut your losses and just report the full posterior
PDF.
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Gaussian Uncertainties
I Suppose we are measuring values x = {xi} drawn from a

Gaussian distribution of mean µ and variance σ2.
I For today, assume σ2 is known but µ is not. How do we estimate µ

given the data?
I Starting from Bayes’ Theorem,

p(µ|x, σ2, I) ∝ p(x|µ, σ2, I) p(µ|σ2, I)

I Likelihood: If the measurements xi are independent, then

p(x|µ, σ2, I) =
N

∏
i=1

p(xi|µ, σ2, I) =
1

(2πσ2)N/2 exp

(
−∑

i

(xi − µ)2

2σ2

)
I Prior: µ is a location parameter, so we’ll use a uniform prior

p(µ|σ2, I) =
1

µmax − µmin

which vanishes outside x ∈ [µmin, µmax].

Segev BenZvi (UR) PHY 403 29 / 36



Gaussian Uncertainties
Estimate of the Mean

I As in the earlier examples, let’s maximize the logarithm of the
posterior PDF to get the best estimate for µ:

L = ln p(µ|x, σ2, I) = constant−
N

∑
i=1

(xi − µ)2

2σ2

I Differentiating, we have

dL
dµ

∣∣∣∣
µ̂

=
N

∑
i=1

xi − µ

σ2 = 0

∴ µ̂ =
1
N

N

∑
i=1

xi .

So the best estimate of µ is the arithmetic mean of the
measurements, independent of the spread given by σ.
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Gaussian Uncertainties
Uncertainty of the Mean

I The uncertainty of the mean comes from the second derivative:

d2L
dµ2

∣∣∣∣
µ̂

= −
N

∑
i=1

1
σ2 = −N

σ2

I Therefore, our best estimate and uncertainty on the mean is

µ = µ̂± σ√
N

I We have derived the expression often referred to as the “error on
the mean,” including the rule that the uncertainty decreases as
1/
√

N.
I The only requirement is the validity of the quadratic expansion of

the posterior PDF, which is exactly true for the Gaussian.
I This rule applies often thanks to the tendency of additive sources

of noise to look Gaussian (Central Limit Theorem)
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Different-Sized Error Bars
Weighted Mean

I What happens if the uncertainties in each xi differ? As long as the
source of uncertainties is Gaussian, then

p(x|µ, σ2
i , I) =

N

∏
i=1

p(xi|µ, σ2
i , I) =

1√
2π|Σ|

exp

(
−∑

i

(xi − µ)2

2σ2
i

)
where Σ is the diagonal covariance matrix of the {xi}.

I Taking the logarithm and differentiating gives

L = ln p = constant−
N

∑
i=1

(xi − µ)2

2σ2
i

dL
dµ

∣∣∣∣
µ̂

=
N

∑
i=0

xi − µ

σ2
i

= 0

∴ µ̂ =
N

∑
i=1

xi/σ2
i

/
N

∑
i=1

1/σ2
i =

N

∑
i=1

xiwi

/
N

∑
i=1

wi
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Different-Sized Error Bars
Weighted Error on the Mean

I For the uncertainty on the mean, we have

d2L
dµ2

∣∣∣∣
µ̂

= −
N

∑
i=0

1
σ2

i

∴ µ = µ̂±
(

N

∑
i=1

wi

)−1/2

, wi = 1/σ2
i

I So for the case of different uncertainties on each measurement xi,
the best estimator of the mean is the arithmetic sum of the data
inversely weighted by the uncertainties.

I This makes a lot of sense; we want the data points with the
biggest uncertainties to contribute the least to the sum
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Principle of Indifference
Uniform and Jeffreys Priors

I Principle of Indifference: given n > 1 mutually exclusive and
exhaustive possibilities, each should be assigned a probability
equal to 1/n.

I Matches our intuition, and we’ve been applying it throughout the
course. We can also use it to derive PDFs.

I Uniform prior is appropriate for a location parameter:

p(X|I) = constant =
1

xmax − xmin
,

I Jeffreys prior is appropriate for a scale parameter:

p(X|I) = 1
x ln (xmax/xmin)

It gives equal probability per decade.
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Summary

I We can identify the best estimator of a PDF by maximizing it, so
that

dp
dx

∣∣∣∣
x̂
= 0

I We assessed the reliability of the estimator by Taylor expanding
L = ln p about the best value:

σ̂2 =

(
−d2L

dx2

∣∣∣∣
x̂

)−1

I This only works when the quadratic approximation is reasonable.
It may not be:

1. Asymmetric PDF: better to use a confidence interval
2. Multimodal PDF: no clear best estimate; report full PDF

I Frequentists: desire efficient, unbiased, and consistent estimators.
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