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Last Time

» The quadratic approximation of the PDF in N dimensions:
p(x|D,I) « exp [(x &) TH®) (x — 54)]

» The Hessian matrix H(%) is an N x N symmetric matrix with

components
o 0°L
v axiaxj 22
irkj
where
L=1Inp

» The covariance matrix ¢ is related to the negative of the inverse
Hessian matrix:
-1
o]y = [=H"];
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Estimating y if 4 and ¢ are Unknown
Student-t Distribution
» If we have Gaussian data with unknown y and o, the resulting
marginal distribution for y is

N —(N-1)/2
p(u|D, 1) [E(xi — u)zl

i=1

if we use a uniform prior for o. If we use a Jeffreys prior,

N —N/2
p(u|D, 1) o [Z(xi - #)2]
i=1
» The width estimator is the usual sample variance
1 Y 1 Y
2_ 4 2 32
57 = N_li:1(xl ]/l) N_li:1(x1 X)

for the uniform prior, and narrower (« 1/N) if using Jeffreys prior
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Estimating ¢ if 4 and ¢ are Unknown
X2 Distribution

» If we have Gaussian data with unknown y and o, the resulting
marginal distribution for ¢ is

p(o]|D, 1) o o~ NV exp (—%), %4

Il
Ing
Py
2
=l
S~—
N

if we use a uniform prior for ¢. If we use a Jeffreys prior,

N 1%
p(c|D,I) <o~ exp <_ﬁ

A2

» 02 = 52, and the reliability of the width estimator is

A

4+ 7
V2(IN=1)

The marginal PDF is equivalent to the X%(Nfl) distribution.

A
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Methods for Automatic Minimization

> Getting the best estimate of a PDF means calculating its
maximum. Sometimes this cannot be done analytically

v

Brute force approach: just plot the PDF on a grid of points and
visually pick out the maximum

v

Unfortunately, this becomes impractical as the dimensionality of
the problem grows

v

Issue 1: visualizing a maximum in more than 2D is hard

v

Issue 2: computational expense. For a problem with N
dimensions, evaluating 10 points on each axis requires 10V
calculations

v

Issue 3: a regular grid could miss narrow features in the PDF

So we need other methods to find the maximum of a function.
Most popular methods linearize the problem

v
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Method of Steepest Descent

» How do we automatically minimize a
multivariable function f(x), or
maximize —f(x)?

» Steepest Descent: given a point a,
f(x) decreases fastest in the direction

—Vf(a)
» Start with a guess xy and update:
Xn+1 = Xn — ')/nvf(xn>/ n> 0

» Control the step size with 7,

» Keep iterating until (hopefully) x;,
converges to a local minimum
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Method of Steepest Descent

Known Issues
» There are several known issues with the steepest descent
algorithm
» For example, if the sequence steps into a “valley” along the
minimum it can start zig-zagging along the walls

» This can make the algorithm quite slow as it approaches the
minimum
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Method of Steepest Descent
Behavior in the Valley

» The figure below shows why the steepest descent algorithm
oscillates back and forth when you enter a valley [1]

> A step starts off in the local gradient direction perpendicular to
the contour lines

» The step traverses a straight line until a local minimum is reached,
where the traverse is parallel to the local contour lines

» Next update is perpendicular to the last direction. Result:
S-L-O-W
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Quadratic Approximation

» Suppose we Taylor-expand our function f(x) about some arbitrary
point ¥/, so that

Fx) = F) + (e X)TVF() + 5= X) TOVF) (= ¥) .
S ) + () TVF) + 5 - ¥) TH) (%)

where H(x') = VVf(x') is the Hessian matrix of f
» Differentiating f with respect to the {x;} gives

Vf(x) ~ Vf(x') + H(x')(x — &)
» If we demand Vf(&) = 0, since we're at an extremum, we obtain

o — [HE) V()
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Newton’s Method

» This expression suggests an iterative
scheme for approaching a minimum:

Xn+1 = Xpn — [H(xn)]_1Vf(xn), n=0

» Intuition: each iteration approximates
f(x) by a quadratic function and takes
a step toward the minimum of the
function

» If f(x) is quadratic, the extremum will
be found in exactly one step
» When the quadratic approximation is
reasonable, this method will converge
0 to the minimum much faster than the
steepest descent algorithm
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Newton’s Method

Computational Tricks

» The stability of the iterations can be improved by reducing the
step size by some positive factor y < 1:

X1 = % — Y[H(x)] ' Vf(x), n>0

v

Note: in N dimensions, inverting H takes O(N?) operations

v

Instead of inverting, calculate the vector p, = [H(x,)] ' Vf(x,) as
the solution to the system of linear equations

H(xs) - p, = Vf(xn)

Methods to solve this equation, like the conjugate gradient (CG)
technique [1], require u ' H(x,,)u > 0 for any real nonzero vector u.

\4

v

Le., the Hessian must be positive definite. This is a useful
diagnostic, e.g., it tells you if the iteration converged to a saddle
point
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Newton’s Method

Known Issues

» Because Vf (&) = 0 is just the condition for a stationary point,
Newton’s method can diverge if x is far from the optimal solution

L
converge

L

diverge

X

T X

> In the figure (left) we want to find the maximum of the PDEF. It’s
roughly quadratic so Newton’s method converges rapidly

» On the right, if we start out in the tails of the function (outside the
dotted lines) the algorithm will not converge to the maximum

> Solution: start with a good first guess. Can use an algorithm that
doesn’t depend on the gradient, like simplex minimization
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Definition of a Simplex
» A simplex is basically a “hyper-triangle” in n
dimensions.

» E.g., the n-simplex A" is the subset of R"*! such that
n
A" ={(to, ,ta) ER"™ | Y ;=1
i=0
/

and t; > 0 for all i}

» Simplex/Nelder-Mead Technique [2]: start with
N + 1 points p, and p; (i = 1...N) such that

p; = po + e

» The points define a simplex for your N-dimensional
parameter space. Try to move the simplex around
and shrink/expand it until it contains the optimal
point
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Downbhill Simplex (Nelder-Mead) Algorithm

simplex at beginning of step
high
low

% e
é ; reflection and expansion
4 contraction

7/ 4 multiple
ey {! contraction
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Define the starting point for the simplex
Pick out the point in the simplex where
f(x) is largest

Reflect this point through the opposite
face of the simplex to a lower point

Shrink or expand the simplex to conserve
its volume

The simplex will crawl, amoeba-like,
toward the minimum

Advantage: no need to calculate the
gradient. Use result as a starting point
for Newton’s method

Disadvantage: convergence issues if
initial simplex is too small
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Difficult Problem: Multimodal Parameter Space

» Often you’ll find that your parameter space is complex, with
multiple minima and maxima

» The algorithms we have discussed so far will run as quickly as
possible to the nearest minimum

» There is no way for you to guarantee that you have gotten to the
global minimum rather than a local minimum
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Simulated Annealing
» Starting from x,,, randomly generate a new point
Xpir1 = Xy + Ax

» Calculate a probability

p=exp {_f(anrl]){T_f(xn) }

for keeping the point, and generate a random number u € [0, 1]. If
u < p, move to x,,+1. Otherwise, stay at x;,.

» For large T, the probability of accepting new points (even “bad”
moves) is high. For small T, the acceptance probability is low

» Idea: start with a high T to help you jump out of local minima,
then slowly reduce the temperature. Slow cooling helps you find
the global minimum energy state, like annealing metal [3]
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Markov Chain Monte Carlo

v

The technique of choosing p to sample states of a thermodynamic
system is called the Metropolis-Hastings algorithm [4]

v

Simulated annealing depends on an annealing schedule for
moving T — 0, which you have to tune. Also, there is no
guarantee of convergence to the global minimum in a finite time

v

Another approach: run a large number of simulations at different
temperatures, letting each one randomly walk through the
parameter space

This technique is called Markov Chain Monte Carlo (MCMC), and
can be used to simulate exploration of all important parts of a
parameter space

v

» MCMC methods have become central to Bayesian analysis. We'll
talk about how and why in a couple of weeks
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Popular Libraries
scipy.optimize

scipy.optimize.minimize

scipy.optimize.minimize(fun, x0, args=(), , jac=None, , hessp 3 ,
constraints=(), tol=None, callback=None, options=None) [source]
Minimization of scalar function of one or more variables.

New in version 0.11.0.

Parameters: fun : callable
Objective function.
x0 : ndarray
Initial guess.
args : tuple, optional
Extra arguments passed to the objective function and its derivatives (Jacobian, Hessian).
method : str or callable, optional

* Newton-CG |

. LAnnear}(deprecated as of scipy version 0.14.0)

o 'L-BFGS-B'

o TNC

e ‘COBYLA

* 'SLSQP'

o ‘dogleg’

¢ ‘trust-ncg’

e custom - a callable object (added in version 0.14.0)
If not given, chosen to be one of BFGS, L-BFGS-B, SLSQP, depending if the problem has
constraints or bounds.
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Popular Libraries
ROOT TMinuit

SROOT

Data Analysis Framework

ROOT has a C++ version of the “popular” MINUIT non-linear
function minimizer. Three minimization algorithms are available:

1. Steepest descent (MIGRAD): evaluates gradient and second
derivatives (Hessian) numerically. Assumes symmetric Gaussian
errors

2. MINOS: relaxes error assumption, allows asymmetric error bars
3. Simplex: does not require evaluation of derivatives

Caution: MINUIT requires a lot of hand-tuning. The going gets
particularly rough in high-D if the parameter space is bumpy.
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Maximum Likelihood Technique
» The method of maximum likelihood is an extremely important
technique used in frequentist statistics

» There is no mystery to it. Here is the connection to the Bayesian
view: given parameters x and data D, Bayes’ Theorem tells us that

p(x|D,I) < p(Dlx, 1) p(x|I)

where we ignore the marginal evidence p(D|I)
» Suppose p(x|I) = constant for all x. Then

p(*D,I) e p(Dlx,I)
and the best estimator % is simply the value that maximizes the
likelihood p(Dl|x,I)
» So the method of maximum likelihood for a frequentist is

equivalent to maximizing the posterior p(x|D,I) with uniform
priors on the {x;}.
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Connection to x?

» Suppose our data D are identical independent measurements with
Gaussian uncertainties. Then the likelihood is
N

, p(DIx 1) =] [p(Dilx, 1),

i=1

1 (Fi — Dy)?
D;x,I) = exp | ————
p(Dilx, T) Vo &P [ 2072
where we defined the functional relationship between x and the
ideal (noiseless) data F as

Fi :f(x, l)

» If we define x? as the sum of the squares of the normalized
residuals (F; — D;)/0;, then
N (F. — D;)? 2
X = Z m = p(D|x,I) < exp (_);>
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Maximum Likelihood and Least Squares

» With a uniform prior on x, the logarithm of the posterior PDF is

2
L =Inp(x|D,I) = constant — 5

v

The maximum of the posterior (and likelihood) will occur when
x* is a minimum. Hence, the optimal solution 2 is called the least
squares estimate

\4

Least squares/maximum likelihood is used all the time in data
analysis, but...

v

Note: there is nothing mysterious or even fundamental about this;
least squares is what Bayes” Theorem reduces to if:

1. Your prior on your parameters is uniform

2. The uncertainties on your data are Gaussian

v

If one of these conditions isn’t met, then use Bayes’” Theorem to
derive something else
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Maximum Likelihood: Poisson Case

» Suppose that our data aren’t Gaussian, but a set of Poisson counts
n with expectation values v. E.g., we are dealing with binned data
in a histogram. Then the likelihood becomes

nj

—y
1/1- e !

N
p(nlv,D) =TT

-1 il
> In the limit N — large, this becomes
p(ni|v;, I) o< exp [— i —(niz_ Ui)Z]
=1 <V
» The corresponding x? statistic is given by
(7’11' — Vi )2

Vi

X =

o

Il
—_

1
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Justifications for Using Least Squares

» Nice property: as N — oo, the x? statistic asymptotically
approaches the value
2
XN—m/
where N is the number of data points and m is the number of
parameters in x.
» Le., the statistic approximates a x? distribution with N — m
degrees of freedom... if the uncertainties in the data are Gaussian
» Note: our definition of x? as the quadrature sum (or /,-norm) of

the residuals makes a lot of calculations easy, but it isn’t
particularly robust. The /;-norm

F,—D;
Ul

l{-norm = Z

i=1

is much more robust against outliers in the data
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Application: Fitting a Straight Line to Data

Example

Suppose we have N measurements y; with Gaussian uncertainties o;
measured at positions x;.

y=ma+c

Given the straight line model y; = mx; 4+ b, what are the best
estimators of the parameters m and b?
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Minimize the x>
Letting F; = mx; + b and D; = y;, the X2 is

2 N (mx; +b—y;)2
X = - 2
i—1 ;

Minimizing x? as a function of the parameters gives

8)( % 2(mx; + b —y;)x; x> % 2(mx; +b—y;)
om 5 of i=1 of

Rewritten as a matrix equation, this becomes

2 A C\ (m\ (p\ _
ve= (e 5) (1) (0) =
A= inzwi, B = Zwi, C= inwi, p= inyiw,-, q= Zyiwi
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Best Estimators of a Linear Function

» Inverting the matrix, we find that

7Bp—Cq and B_L—Cp

M= AB_C2 T AB_C2

» The covariance matrix is found by evaluating 2V V x2] 1

0% o) _, (A CY__ 2 B -C
omy 0f) ~\C B - AB-C2\-C A
» We note that even though the data {y;} are independent, the

parameters 7z and b end up anticorrelated due to the off-diagonal
terms in the covariance matrix

» This makes a lot of sense, actually; wiggling the slope of the line m
clearly changes the y-intercept b
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Summary

» You will often find the need to maximize a likelihood (or
minimize a x? or negative log likelihood) automatically

v

Various algorithms available (simplex, Newton, etc.) with trade
offs between speed and accuracy

v

All algorithms are sensitive, to some degree or another, to the
starting position of the minimization

v

Maximum likelihood: same as maximizing a posterior PDF when
the priors on the parameters are uniform

v

Maximizing the likelihood is the same as minimizing x? in the
case where the uncertainties on the data are Gaussian

v

In case of Gaussian uncertainties, there is asymptotic convergence
of the maximum likelihood to the x? distribution:

XZ = —2InL ~ X%\I—m
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