Physics 403 Propagation of Uncertainties

Segev BenZvi

Department of Physics and Astronomy University of Rochester

Table of Contents

Maximum Likelihood and Minimum Least Squares
 Uncertainty Intervals from Δ ln L

- Marginal and Joint Confidence Regions
- 2) Propagation of Uncertainties
 - Error Propagation Formula
 - Using the Covariance
 - Breakdown of Error Propagation
 - Averaging Correlated Measurements with Least Squares
 - Asymmetric Error Bars
- Bayesian Approach: Using the Complete PDF
 Breakdown of the Error Propagation Formula

Reading

- Sivia: Ch. 3.6
- Cowan: Ch. 7.6

Maximum Likelihood and Method of Least Squares

 Suppose we measure data *x* and we want to find the posterior of the model parameters *θ*. If our priors on the parameters are uniform then

$$p(\boldsymbol{\theta}|\boldsymbol{x}, I) \propto p(\boldsymbol{x}|\boldsymbol{\theta}, I) \ p(\boldsymbol{\theta}|I) = p(\boldsymbol{x}|\boldsymbol{\theta}, I) = \mathcal{L}(\boldsymbol{x}|\boldsymbol{\theta})$$

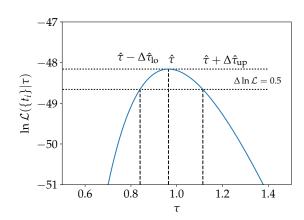
- In this case finding the best estimate θ̂ is equivalent to maximizing the likelihood *L*
- If $\{x_i\}$ are independent measurements with Gaussian errors then

$$p(\boldsymbol{x}|\boldsymbol{\theta}, I) = \mathcal{L}(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{1}{(2\pi\Sigma)^{N/2}} \exp\left(-\sum_{i=1}^{N} \frac{(f(x_i) - x_i)^2}{2\sigma_i^2}\right)$$

Least Squares: equivalent to maximizing ln L, except you minimize

$$\chi^{2} = \sum_{i=1}^{N} \frac{(f(x_{i}) - x_{i})^{2}}{\sigma_{i}^{2}}$$

Obtaining Uncertainty Intervals from $\Delta \ln \mathcal{L}$ and $\Delta \chi^2$



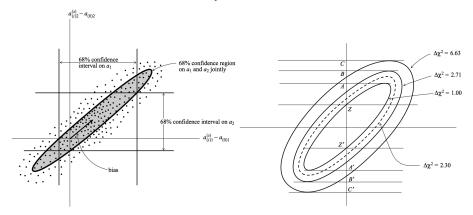
For Gaussian uncertainties we can obtain 1σ , 2σ , and 3σ intervals using the rules

Error	$\Delta \ln \mathcal{L}$	$\Delta \chi^2$
1σ	0.5	1
2σ	2	4
3σ	4.5	9

Even without Gaussian errors this can work reasonably well. But, a safe alternative is simulation of $\ln \mathcal{L}$ with Monte Carlo

Marginal and Joint Confidence Regions

The curves $\Delta \chi^2 = 1.00, 2.71, 6.63$ project onto 1D intervals containing 68.3%, 90%, and 99% of normally distributed data



Note that it's the intervals, not the ellipses themselves, that contain 68.3%. The ellipse that contains 68% of the 2D space is $\Delta \chi^2 = 2.30$ [1]

Joint Confidence Intervals

If we want multi-dimensional error ellipses that contain 68.3%, 95.4%, and 99.7% of the data, we use these contours in $\Delta \ln \mathcal{L}$:

		joint parameters					
Range	р	1	2	3	4	5	6
1σ	68.3%	0.50	1.15	1.76	2.36	2.95	3.52
2σ	95.4%	2.00	3.09	4.01	4.85	5.65	6.4
3σ	99.7%	4.50	5.90	7.10	8.15	9.10	10.05

Or these in $\Delta \chi^2$ [1]:

		joint parameters					
Range	р	1	2	3	4	5	6
1σ	68.3%	1.00	2.30	3.53	4.72	5.89	7.04
2σ	95.4%	4.00	6.17	8.02	9.70	11.3	12.8
3σ	99.7%	9.00	11.8	14.2	16.3	18.2	20.1

Table of Contents

Maximum Likelihood and Minimum Least Squares

- Uncertainty Intervals from $\Delta \ln \mathcal{L}$
- Marginal and Joint Confidence Regions

Propagation of Uncertainties

- Error Propagation Formula
- Using the Covariance
- Breakdown of Error Propagation
- Averaging Correlated Measurements with Least Squares
- Asymmetric Error Bars

Bayesian Approach: Using the Complete PDF

• Breakdown of the Error Propagation Formula

Propagation of Uncertainties

- We know that measurements (or fit parameters) *x* have uncertainties, and these uncertainties need to be propagated when you calculate functions of measured quantities *f*(*x*)
- From undergraduate lab courses you know the formula [2]

$$\sigma_f^2 \approx \sum_{i=1}^N \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_{x_i}^2$$

- ► Question: what does this formula assume about the uncertainties on *x* = (*x*₁, *x*₂, ..., *x*_N)?
- ▶ **Question**: what does this formula assume about the PDFs of the {*x_i*} (if anything)?
- **Question**: what does this formula assume about *f*?

Propagation of Uncertainties

- ► Let's start with a set of *N* random variables *x*. E.g., the {*x_i*} could be parameters from a fit
- ► We want to calculate a function *f*(*x*), but suppose we don't know the PDFs of the {*x_i*}, just best estimates of their means *x̂* and the covariance matrix *V*
- Linearize the problem: expand f(x) to first order about the means of the x_i:

$$f(\mathbf{x}) \approx f(\hat{\mathbf{x}}) + \sum_{i=1}^{N} \frac{\partial f}{\partial x_i} \Big|_{\mathbf{x}=\hat{\mathbf{x}}} (x_i - \hat{x}_i)$$

► The name of the game: calculate the expectation and variance of *f*(*x*) to derive the error propagation formula. To first order,

 $\mathbf{E}[f(\mathbf{x})] \approx f(\hat{\mathbf{x}})$

Error Propagation Formula

► Get the variance by calculating the expectation of *f*²:

$$\begin{split} \mathbf{E}\left[f^{2}(\boldsymbol{x})\right] &\approx f^{2}(\hat{\boldsymbol{x}}) + 2f(\hat{\boldsymbol{x}})\sum_{i=1}^{N} \frac{\partial f}{\partial x_{i}}\Big|_{\boldsymbol{x}=\hat{\boldsymbol{x}}} \mathbf{E}\left(x_{i}-\hat{x}_{i}\right) \\ &+ \mathbf{E}\left[\left(\sum_{i=1}^{N} \frac{\partial f}{\partial x_{i}}\Big|_{\boldsymbol{x}=\hat{\boldsymbol{x}}}(x_{i}-\hat{x}_{i})\right)\left(\sum_{j=1}^{N} \frac{\partial f}{\partial x_{j}}\Big|_{\boldsymbol{x}=\hat{\boldsymbol{x}}}(x_{j}-\hat{x}_{j})\right)\right] \\ &= f^{2}(\hat{\boldsymbol{x}}) + \sum_{i,j=1}^{N} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}\Big|_{\boldsymbol{x}=\hat{\boldsymbol{x}}} V_{ij} \end{split}$$

Since $\operatorname{var}(f) = \sigma_f^2 = \operatorname{E}(f^2) - \operatorname{E}(f)^2$, we find that

$$\sigma_f^2 \approx \sum_{i,j=1}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} \bigg|_{\boldsymbol{x}=\hat{\boldsymbol{x}}} V_{ij}$$

Error Propagation Formula

For a set of *m* functions $f_1(x), \ldots, f_m(x)$, we have a covariance matrix

$$\operatorname{cov}\left(f_{k},f_{l}\right)=U_{kl}\approx\sum_{i,j=1}^{N}\frac{\partial f_{k}}{\partial x_{i}}\frac{\partial f_{l}}{\partial x_{j}}\Big|_{\boldsymbol{x}=\hat{\boldsymbol{x}}}V_{ij}$$

► Writing the matrix of derivatives as A_{ij} = ∂f_i/∂x_j, the covariance matrix can be written

$$U = AVA^{\top}$$

► For uncorrelated *x*_{*i*}, *V* is diagonal and so

$$\sigma_f^2 \approx \sum_{i=1}^N \frac{\partial f}{\partial x_i} \bigg|_{\boldsymbol{x} = \hat{\boldsymbol{x}}} \sigma_i^2$$

This is the form you're used to from elementary courses.

Propagation of Uncertainties for Two Variables

• Let x = (x, y). The general form of σ_f^2 is

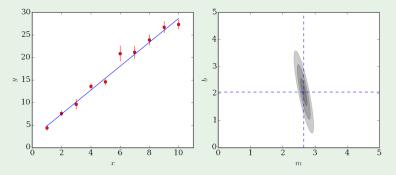
$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + 2\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}\rho\sigma_x\sigma_y$$

- The final cross term is often in lab courses, but it's important! Since the correlation between x and y can be negative, you can overestimate the uncertainty in f by failing to include it
- Don't forget the assumptions underlying this expression:
 - 1. Gaussian uncertainties with known covariance matrix
 - 2. *f* is approximately linear in the range $(x \pm \sigma_x, y \pm \sigma_y)$
- If the assumptions are violated, the error propagation formula breaks down

Interpolation of Linear Fit

Example

Example LS fit: best estimators $\hat{m} = 2.66 \pm 0.10$, $\hat{b} = 2.05 \pm 0.51$, cov $(m, b) = -0.10 \implies \rho = -0.94$



 $y(5.5) = 16.68 \pm 0.75$ without using the correlation. With the correlation, $y(5.5) = 16.68 \pm 0.19$.

Breakdown of Error Propagation

Example

Imagine two independent variables *x* and *y* with $\hat{x} = 10 \pm 1$ and $\hat{y} = 10 \pm 1$. The variance in the ratio $f = x^2/y$ is

$$\sigma_f^2 = \left[4\left(\frac{x}{y}\right)^2\sigma_x^2 + \left(\frac{x}{y}\right)^4\sigma_y^2\right]_{x=\hat{x}}$$

For $\hat{x} = \hat{y} = 10$ and $\sigma_x^2 = \sigma_y^2 = 1$,

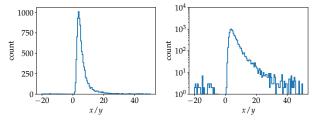
$$\sigma_f^2 = 4\left(\frac{10}{10}\right)^2 (1)^2 + \left(\frac{10}{10}\right)^4 (1)^2 = 5$$

But, suppose $\hat{y} = 1$. Then the uncertainty blows up

$$\sigma_f^2 = 4\left(\frac{10}{1}\right)^2 (1)^2 + \left(\frac{10}{1}\right)^4 (1)^2 = 10400$$

Breakdown of Error Propagation

- ▶ What happened? If ŷ = 1, then y can be very close to zero when f(x, y) is expanded about the mean, so f can blow up and become non-linear
- Note: be careful even when the error propagation assumptions of small uncertainties and linearity apply; the resulting distribution could still be non-Gaussian. Example: *x*/*y*, with *x* = 5 ± 1 and *ŷ* = 1 ± 0.5:



► In this case, reporting a central value and RMS for *f* = *x*/*y* is clearly inadequate

Segev BenZvi (UR)

Case Study: Polarization Asymmetry

Example

- Early evidence supporting the Standard Model of particle physics came from observing the difference in cross sections σ_R and σ_L for inelastic scattering of right- and left-handed polarized electrons on a deuterium target [3]
- ► The experiment studied the polarization asymmetry defined by

$$\alpha = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

- Must be careful about using the error on *α* to conclude whether or not *α* is consistent with zero
- More robust approach: check whether or not $\sigma_R \sigma_L$ alone is consistent with zero

Averaging Correlated Measurements using Least Squares

Imagine we have a set of measurements x_i ± σ_i of some "true value" λ. Since λ is the same for all measurements, we can minimize

$$\chi^2 = \sum_{i=1}^N \frac{(x_i - \lambda)^2}{\sigma_i^2}$$

The LS estimator for λ is the weighted average

$$\hat{\lambda} = \frac{\sum y_i / \sigma_i^2}{\sum 1 / \sigma_i^2}, \quad \operatorname{var}(\hat{\lambda}) = \frac{1}{\sum 1 / \sigma_i^2}$$

For correlated measurements, we can write

$$\chi^{2} = \sum_{i,j=1}^{N} (x_{i} - \lambda) (V^{-1})_{ij} (x_{j} - \lambda)$$

$$\therefore \hat{\lambda} = \sum_{i=1}^{N} w_{i} x_{i}, \qquad w_{i} = \frac{\sum_{j=1}^{N} (V^{-1})_{ij}}{\sum_{k,l=1}^{N} (V^{-1})_{kl}}, \qquad \text{var}(\hat{\lambda}) = \sum_{i,j=1}^{N} w_{i} V_{ij} w_{j}$$

Segev BenZvi (UR)

Example: Averaging Correlated Measurements See Cowan Ch. 7.6.1

Example

We measure a length with two rulers made of different materials (and different coefficients of thermal expansion). Both are calibrated to be accurate at $T = T_0$ but otherwise have a temperature dependence

$$y_i = L_i + c_i(T - T_0)$$

We know the c_i and the uncertainties, T, and L_1 and L_2 from the calibration. We want to combine measurements and get \hat{y} . The variances and covariance are

$$\operatorname{var}(y_{i}) = \sigma_{i}^{2} = \sigma_{L_{i}}^{2} + c_{i}^{2}\sigma_{T}^{2}$$
$$\operatorname{cov}(y_{1}, y_{2}) = \operatorname{E}(y_{1}y_{2}) - \hat{y}^{2} = c_{1}c_{2}\sigma_{T}^{2}$$

Solve for \hat{y} with the weighted mean derived using least squares

Example: Averaging Correlated Measurements

Example

Plug in the following values: $T_0 = 25$, $T = 23 \pm 2$, and

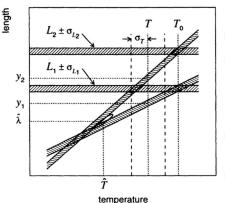
Ruler	C _i	L_i	y_i
1	0.1	2.0 ± 0.1	1.80 ± 0.22
2	0.2	2.3 ± 0.1	1.90 ± 0.41

Solving, we find the weighted average is

$$\hat{y} = \frac{(\sigma_{L_2}^2 + (c_2^2 - c_1 c_2)\sigma_T^2)y_1 + \sigma_{L_1}^2 + (c_1^2 - c_1 c_2)\sigma_T^2)y_2}{\sigma_{L_1}^2 + \sigma_{L_2}^2 + (c_1 - c_2)^2\sigma_T^2} = 1.75 \pm 0.19$$

So the effect of the correlation is that the weighted average is less than either of the two individual measurements. Moreover, if $\sigma_L \rightarrow$ small and $\sigma_T \rightarrow$ large, $\sigma_y \rightarrow 0$. Does that make sense?

Averaging Correlated Measurements



- Horizontal bands: lengths L_i from two rulers
- Slanted: lengths y_i corrected for T
- If L₁ and L₂ are known accurately, but y₁ and y₂ differ, then the true temperature must be different than the measured value of T
- The χ² favors reducing ŷ until y₁(T) and y₂(T) intersect
 - If the correction $\Delta T \gg \sigma_T$, some assumption is probably wrong. This would be reflected as a large value of χ^2 and a small *p*-value

Asymmetric Uncertainties

- You will often encounter published data with asymmetric error bars σ₊ and σ₋, e.g., if the author found an error interval with the maximimum likelihood method
- What do you do if you have no further information about the form of the likelihood, which is almost never published?
- ▶ Suggestion due to Barlow [4, 5]: parameterize the likelihood as

$$\ln \mathcal{L} = -\frac{1}{2} \frac{(\hat{x} - x)^2}{\sigma(x)^2}$$

where $\sigma(x) = \sigma + \sigma'(x - \hat{x})$. Requiring it to go through the -1/2 points gives

$$\ln \mathcal{L} = -\frac{1}{2} \left(\frac{(\hat{x} - x)(\sigma_+ + \sigma_-)}{2\sigma_+\sigma_- + (\sigma_+ - \sigma_-)(x - \hat{x})} \right)$$

When σ₊ = σ_− this reduces to an expression that gives the usual ∆ln L = 1/2 rule

Table of Contents

Maximum Likelihood and Minimum Least Squares

- Uncertainty Intervals from $\Delta \ln \mathcal{L}$
- Marginal and Joint Confidence Regions
- 2) Propagation of Uncertainties
 - Error Propagation Formula
 - Using the Covariance
 - Breakdown of Error Propagation
 - Averaging Correlated Measurements with Least Squares
 - Asymmetric Error Bars
- Bayesian Approach: Using the Complete PDFBreakdown of the Error Propagation Formula

Full Bayesian Approach

Transformation of Variables

- In the Bayesian universe, you would ideally know the complete PDF and use that to propagate uncertainties
- ► In this case, if we have some p(x|I) and we define y = f(x), then we need to map p(x|I) to p(y|I)
- Consider a small interval δx around x' such that

$$p(x' + \delta x/2 \le x < \delta x/2|I) \approx p(x = x'|I) \,\delta x$$

► y = f(x) maps x' to y' = f(x') and δx to δy . The range of y values in $y' \pm \delta y/2$ is equivalent to a variation in x between $x' \pm \delta x/2$, and so

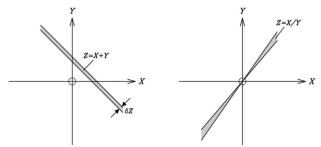
$$p(x = x'|I) \ \delta x = p(y = y'|I) \ \delta y$$

In the limit $\delta x \rightarrow 0$, this yields the PDF transformation rule

$$p(x|I) = p(y|I) \quad \left| \frac{dy}{dx} \right|$$

Application to Simple Problems

If we want to estimate a sum like *z* = *x* + *y* or a ratio *z* = *x*/*y*, we integrate the joint PDF *p*(*x*, *y*|*I*) along the shaded strips defined by δ(*z*−*f*(*x*, *y*)):



The explicit marginalization is

$$p(z|I) = \iint dx \, dy \, p(z|x, y, I) \, p(x, y|I)$$
$$= \iint dx \, dy \, \delta(z - f(x, y)) \, p(x, y|I)$$

Sum of Two Random Variables

• The sum z = x + y requires that we marginalize

$$p(z|I) = \iint dx \, dy \, \delta(z - (x + y)) \, p(x, y|I)$$

• If we are given $x = \hat{x} \pm \sigma_x$ and $y = \hat{y} \pm \sigma_y$, then we can assume x and y are independent and factor the joint PDF into separate PDFs by the product rule:

$$p(z|I) = \int dx \, p(x|I) \int dy \, p(y|I) \, \delta(z - x - y)$$
$$= \int dx \, p(x|I) \, p(y = z - x|I)$$

Assuming Gaussian PDFs for x and y,

$$p(z|I) = \frac{1}{2\pi\sigma_x\sigma_y} \int dx \, \exp\left\{-\frac{(x-\hat{x})^2}{2\sigma_x^2}\right\} \, \exp\left\{-\frac{(z-x-\hat{y})^2}{2\sigma_y^2}\right\}$$

Sum of Two Random Variables

After some rearranging of terms and changes of variables, we can express

$$p(z|I) = \frac{1}{2\pi\sigma_x\sigma_y} \int dx \, \exp\left\{-\frac{(x-\hat{x})^2}{2\sigma_x^2}\right\} \, \exp\left\{-\frac{(z-x-\hat{y})^2}{2\sigma_y^2}\right\}$$

as

$$p(z|I) = \frac{1}{\sqrt{2\pi}\sigma_z} \exp\left\{-\frac{(z-\hat{z})^2}{2\sigma_z^2}\right\}$$

where

$$\hat{z} = \hat{x} + \hat{y}$$
 and $\sigma_z^2 = \sigma_x^2 + \sigma_y^2$

Hence, we see how the quadrature sum rule for adding uncertainties derives directly from the assumption of Gaussian errors. Note that for a difference z = x - y, the uncertainties still add in quadrature but $\hat{z} = \hat{x} - \hat{y}$, as you'd expect

Case Study: Amplitude of a Bragg Peak in Crystallography

Isn't this serious overkill given that we have the error propagation formula? Unfortunately, recall that the formula can break down

Example

- In crystallography, one measures a Bragg peak $A = \hat{A} \pm \sigma_A$
- The peak is related to the structure factor $A = |F|^2$
- We want to estimate $f = |F| = \sqrt{A}$. From the propagation formula,

$$f = \sqrt{\hat{A}} \pm \frac{\sigma_A}{2\sqrt{\hat{A}}}$$

- Problem: suppose < 0, which is an allowed measurement due to reflections
- Now we're in trouble, because the error propagation formula requires us to take the square root of a negative number

Solution with Full PDF

Let's write down the full posterior PDF

 $p(A|\{\text{data}\}, I) \propto p(\{\text{data}\}|A, I) p(A|I)$

 By applying the error propagation formula, we assumed A is distributed like a Gaussian, so

$$p(\{\text{data}\}|A, I) \propto \exp\left\{-\frac{(A-\hat{A})^2}{2\sigma_A^2}\right\}$$

Since A < 0 is a problem, let's define the prior to force A into a physical region:</p>

$$p(A|I) = \begin{cases} \text{constant} & A \ge 0\\ 0 & \text{otherwise} \end{cases}$$

When $\hat{A} < 0$, the prior will truncate the Gaussian likelihood

Solution with Full PDF

- Truncating the PDF violates the error propagation formula, because it depends on a Taylor expansion about a central maximum
- ► There is no such restriction on the formal change of variables to *f*:

$$p(f|\{\text{data}\}, I) = p(A|\{\text{data}\}, I) \cdot \left|\frac{dA}{df}\right|$$

• The Jacobian is |dA/df| = 2f, with $f = |F| \ge 0$, so

$$p(f|\{\text{data}\}, I) \propto f \cdot \exp\left\{-\frac{(f^2 - \hat{A})^2}{2\sigma_A^2}\right\} \text{ for } f \ge 0$$

Find \hat{f} by maximizing $\ln p$, and σ_f^2 from $\sigma_f^2 = (-\partial^2 \ln p / \partial f^2)^{-1}$:

$$2\hat{f}^{2} = \hat{A} + \sqrt{\hat{A}^{2} + 2\sigma_{A}^{2}}, \qquad \sigma_{f}^{2} = \left[\frac{1}{\hat{f}^{2}} + \frac{2(3\hat{f}^{2} - \hat{A})}{\sigma_{A}^{2}}\right]^{-1}$$

• When $\hat{A} > 0$ and $\hat{A} \gg \sigma_A$, the expression for *f* is

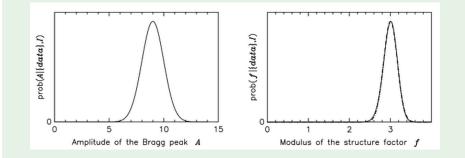
$$2\hat{f}^{2} = \hat{A} + \left(\hat{A}^{2} + 2\sigma_{A}^{2}\right)^{1/2}$$
$$= \hat{A} \left[1 + \left(1 + 2\left(\frac{\sigma_{A}}{\hat{A}}\right)^{2}\right)^{1/2}\right]$$
$$\approx \hat{A} \left[1 + \left(1 + \left(\frac{\sigma_{A}}{\hat{A}}\right)^{2}\right)\right] \approx 2\hat{A}$$
$$\therefore \hat{f} \approx \sqrt{\hat{A}}$$

Similarly, the expression for σ_f reduces to

$$\sigma_f^2 = \left[\frac{1}{\hat{f}^2} + \frac{2(3\hat{f}^2 - \hat{A})}{\sigma_A^2}\right]^{-1} \to \frac{\sigma_A^2}{4\hat{A}}$$

Example

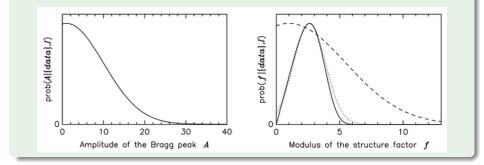
For example, if $A = 9 \pm 1$, the posterior PDFs of A and f look very similar to the Gaussian PDF implied by the error propagation formula:



The transformed PDF is shown as a solid line, and the propagated Gaussian PDF is a dashed line.

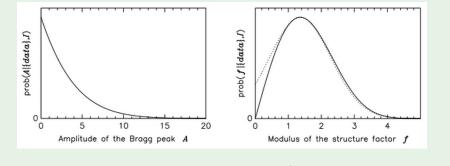
Example

If $A = 1 \pm 9$, the error propagation formula (dashed) begins to blow up compared to the full PDF:



Example

If $A = -20 \pm 9$, the error propagation formula can't even be applied. The posterior PDF looks like a Rayleigh distribution:



The dotted line shows $2\hat{f}^2 = \hat{A} + (\hat{A}^2 + 2\sigma_A^2)^{1/2}$.

Summary

- ► The standard error propagation formula applies when uncertainties are Gaussian and *f*(*x*) can be approximated by a first-order Taylor expansion (linearized)
- Most undergraduate courses emphasize only uncorrelated uncertainties, but you need to account for correlations
- Often authors will report asymmetric error bars, implying non-Gaussian uncertainties, without giving the form of the PDF. In this case there are some approximations to the likelihood that you can try to use
- Standard error propagation breaks down when the errors are asymmetric or *f*(*x*) can't be linearized
- The general case is to use the full PDF to construct a new uncertainty interval on your best estimator. It's a pain (and often overkill) but it is always correct and can help you when standard error propagation fails

References I

- [1] W. Press et al. *Numerical Recipes in C*. New York: Cambridge University Press, 1992. URL: http://www.nr.com.
- [2] John R. Taylor. *An Introduction to Error Analysis*. Sausalito, CA: University Science Books, 1997.
- [3] C.Y. Prescott et al. "Parity Nonconservation in Inelastic Electron Scattering". In: *Phys.Lett.* B77 (1978), pp. 347–352.
- [4] Roger Barlow. "Asymmetric Errors". In: *PHYSTAT 2003*. SLAC, 2003, pp. 250–255.
- [5] Roger Barlow. "Asymmetric Statistical Errors". In: (2004), pp. 56–59. arXiv: physics/0406120 [physics].