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Model Selection

I For the past month we have discussed parameter estimation,
which gets us the “best estimate” of a model parameter given
some measurement

I In the next two classes we will review the topic of model selection,
also known as hypothesis testing

I In model selection, you don’t find a best fit parameter given a
model; you test whether or not the model is itself a good fit to the
data

I While the question you are asking of the data is different, the
techniques used for parameter estimation and model selection are
essentially identical (at least in the Bayesian framework)

I As usual, we don’t evaluate a hypothesis or model in isolation,
but in the context of several competing and sometimes mutually
exclusive models. You’ll see how this works with some simple
examples, but it’s pretty intuitive
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Hypothesis Testing

A cute framing device used in Sivia [1]:

Mr. A has a theory; Mr. B also has a theory, but with an adjustable
parameter λ. Whose theory should we prefer on the basis of data D?

Example
Suppose D represents noisy measurements y as a function of x.

I Mr. A: the data are described by y = 0
I Mr. B: the data are described by y = a, with a = constant
I Mr. C: the data are described by y = a + bx
I Mr. F: the data are described by y = a + bx + cx2 + dx3 + . . .

Are the data best fit by a constant? A line? A high-order polynomial?
How do we choose?
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Posterior Odds Ratio

I As in parameter estimation, we choose between two models or
hypotheses using the ratio of posterior PDFs

posterior ratio = OAB =
p(A|D, I)
p(B|D, I)

I Recall the criteria for making a decision about which model to
favor, due to Jeffreys [2]

OAB Strength of Evidence
< 1 : 1 negative (supports B)

1 : 1 to 3 : 1 barely worth mentioning
3 : 1 to 10 : 1 substantial support for A

10 : 1 to 30 : 1 strong support for A
30 : 1 to 100 : 1 very strong support for A

> 100 : 1 decisive evidence for A
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The Bayes Factor and Prior Odds

I Applying Bayes’ Theorem to the numerator and denominator of
the odds ratio gives

OAB =
p(A|D, I)
p(B|D, I)

=
p(D|A, I)
p(D|B, I)

× p(A|I)
p(B|I)

where the normalizing term p(D|I) cancels out
I Recall that the likelihood ratio is called the Bayes Factor.
I The second term is the prior odds ratio. It describes how much

you favor model A over B before taking data
I Normally one might like to treat the models in an unbiased

manner and set p(A|I) = p(B|I), so that the odds ratio is
completely given by the likelihood ratio (or “Bayes Factor”). But
can you think of any situations where this might not be the case?
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When to use Nontrivial Prior Odds

Example
You are conducting a medical trial to determine if a treatment is
effective. A says it’s effective; B says it’s ineffective but otherwise
harmless, i.e., B = A. Might it be ethical and economical to set
p(A|I) > p(B|I)?

Example
You are a particle physicist looking for new physics, e.g., a signature of
supersymmetry, with A saying the new physics is real and B saying it’s
not (B = A). The outcome of a false claim supporting A could be
harmful – colleagues’ time wasted on analysis or designing new
experiments, public embarrassment for the field, etc. – so you might be
justified starting your experiment with the prior belief p(A|I) < p(B|I),
or perhaps even p(A|I)� p(B|I).
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Computing the Likelihood Ratio

I Let’s get back to the original problem of Mr. A and Mr. B, where B
proposal a model with an adjustable parameter λ

I Since λ is adjustable and unknown a priori we marginalize the
likelihood p(D|B, I):

p(D|B, I) =
∫

p(D, λ|B, I) dλ =
∫

p(D|λ, B, I) p(λ|B, I) dλ

I The first term is an ordinary likelihood function parameterized in
terms of λ

I The second term contains any prior knowledge about λ

I It is the responsibility of Mr. B to provide some PDF describing
the state of knowledge of λ. As usual for priors, it could be a
previous measurement, a theoretical calculation, or a personal
opinion (hopefully well-motivated)
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Computing the Marginal Likelihood
I Suppose that B can only say that λ ∈ [λmin, λmax]. In this case

p(λ|B, I) =
1

λmax − λmin

for λ inside the limits and zero otherwise
I Also suppose there is a best value λ̂ (or λ0) that yields the closest

agreement with the measurements, such that p(D|λ̂, B, I) is a
maximum there
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Combining the Likelihood and Prior for B

I Without much loss of generality, let’s assume that p(D|λ, B, I) is
approximately Gaussian for λ = λ̂± δλ:

p(D|λ, B, I) = p(D|λ̂, B, I)× exp

[
− (λ− λ̂)2

2 δλ2

]

I Since the prior does not depend on λ, the marginal likelihood of B
is

p(D|B, I) =
1

λmax − λmin

∫ λmax

λmin

p(D|λ, B, I) dλ

I As long as the limits of integration do not significantly truncate
the Gaussian in λ, the integral is approximately∫ λmax

λmin

p(D|λ, B, I) dλ ≈ p(D|λ̂, B, I)× δλ
√

2π
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Combining the Likelihood and Prior for B
I Putting all the pieces together, the odds ratio of A and B is

OAB =
p(A|I)
p(B|I)

p(D|A, I)
p(D|λ̂, B, I)

λmax − λmin

δλ
√

2π

I First term: the usual prior odds ratio
I Second term: the likelihood ratio or Bayes factor. Because λ is an

adjustable parameter we expect this term will definitely favor B
over A

I Third term: the Ockham (or Occam) factor. We expect that
λmax − λmin will be larger than the small range δλ allowed by the
data, so this term favors A over B

I The Ockham factor penalizes over-constrained fits:

“It is vain to do with more what can be done with fewer.”
– William of Ockham
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Comments about the Uniform Prior

I Issue: isn’t it a problem if λmin and λmax are allowed to go to ±∞?
I In this case there would be an infinite penalty on model B and we

would never favor it, no matter what the data say
I In practice this pretty much never happens; claiming absolute

ignorance is just not realistic and wilfully ignores lots of physical
insight

Example
Suppose we are looking for deviations of Newtons Law of Gravitation
in the form

1
r2 →

1
r2+ε

We would never claim a prior on ε of ±∞. From below we expect
ε > 0, and from above we know that ε� 2; if it weren’t we would
have already observed a large effect
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Results Dominated by the Priors or the Ockham Factor
I In pretty much every decent experiment you tend to be in a

situation where the data (in the form of the Bayes Factor)
dominates the prior odds

I The Ockham factor becomes important if model B does not give a
much better result with more data. In this case δλ becomes
increasingly narrow, leading to bigger and bigger penalites
against B

I This does not happen when the data are of bad quality, or
irrelevant, or you have low statistics. I.e., you’ve designed a bad
experiment for the physics you are trying to accomplish

I If the measurements are poor then you expect

δλ� λmax − λmin

p(D|λ̂, B, I) ≈ p(D|A, I)

OAB ≈
p(A|I)
p(B|I)
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Two Models with Free Parameters: Case 1
I Suppose that A also has an adjustable parameter µ. For example,

A could predict a Gaussian peak and B a Lorentzian peak, and λ
and µ are the FWHM of the predictions

I In this case the posterior odds ratio is

OAB =
p(A|D, I)
p(B|D, I)

=
p(A|I)
p(B|I) ×

p(D|µ̂, A, I)
p(D|λ̂, B, I)

× δµ

δλ
× λmax − λmin

µmax − µmin

I If p(A|I) = p(B|I) and we have similar prior ranges for µ and λ,

OAB ≈
p(D|µ̂, A, I)
p(D|λ̂, B, I)

× δµ

δλ

I For data of good quality, the best-fit likelihood ratio dominates.
But, if both models give similar agreement with the data then the
one with the larger error bar δµ or δλ will be favored

I Wait, what? How can the less discriminating theory do better? In
the context of model selection, a larger uncertainty means that
more parameter values are consistent with a given hypothesis
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Two Models with Free Parameters: Case 2

I There is another case: A and B have the same physical theory but
different prior ranges on µ and λ

I In this case, we imagine that A and B set limits that are large
enough that they incorporate all parameter values fitting
reasonably to the data

I Assuming equal a priori weighting towards A and B, the odds
ratio is

OAB =
p(A|D, I)
p(B|D, I)

=
λmax − λmin

µmax − µmin

because we expect λ̂ = θ̂ and δλ = δµ

I The analysis will support the model with a narrow prior range,
which it should if B has a good reason to predict the value of his
parameter mor accurately than A
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Comparison with Parameter Estimation

I Note how this differs from parameter estimation, where we
assume that a model is correct and calculate the best parameter
given that model

I To infer the value of λ from the data, given that B is correct, we
write

p(λ|D, B, I) =
p(D|λ, B, I) p(λ|B, I)

p(D|B, I)

I To estimate λ we want to maximize the likelihood over the range
[λmin, λmax]. As long as the range contains enough of p(D|λ, B, I)
around λ̂, its particular bounds do not matter for finding λ̂

I To calculate the odds ratio of A and B we are basically comparing
the likelihoods averaged over the parameter space

I Therefore, in model selection the Ockham factor matters because
there is a cost to averaging the likelihood over a larger parameter
space
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Hypothesis Testing

I You have seen that parameter estimation and model selection are
quite similar; we are just asking different questions of the data

I In model selection we calculate the probability that some
hypothesis H0 is true, starting from Bayes’ Theorem:

p(H0|D, I) =
p(D|H0, I) p(H0|I)

p(D|I)

I The marginal evidence p(D|I) can be ignored if we are calculating
the odds ratio of H0 with some other hypothesis H1

I If we actually want to know p(H0|D, I) we need to calculate
p(D|I). This requires the alternative hypothesis. Using
marginalization and the product rule,

p(D|I) = p(D|H0, I) p(H0|I) + p(D|H1, I) p(H1|I)
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Hypothesis Testing

I It’s very nice when the alternative hypothesis and H0 completely
exhaust all the possibilities, i.e., H1 = H0. However, this need not
be the case

Example
Suppose we’re looking for a peak in some data. H0 could be “the
shape of the peak is Gaussian,” and H1 could be “the shape of the peak
is Lorentzian.”

Clearly H1 6= H0, but we can still define p(H0|D, I) using the specific
set of possibilities {H0, H1}.

Still, defining a generic alternative hypothesis H1 = H0 is possible if
we’re willing to work hard at it. Consider the example of binned data
where the expected count λi in bin i is given by a flat backround and
Gaussian signal in H0. What could H0 look like?
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Summary

I Hypothesis testing and parameter estimation are quite similar in
terms of the calculations we need to do, but they ask different
things of the data

I Parameter estimation: we use the maximum likelihood.
Hypothesis testing: we use the average likelihood

I Frequentist approach is to minimize Type I errors (rejecting a true
H0) and Type II errors (rejecting a true H1) using a likelihood ratio
test. This is justified by the Neyman-Pearson lemma

I A p-value and a Type I error rate α are not the same thing
I If you use a p-value to choose between two hypotheses, you’re

asking for trouble unless you demand very strong evidence
against the null hypothesis
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