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Evaluating Full Posterior Distributions

Recall the types of calculations we often have to do in a Bayesian
analysis (from [1]):

pOx D pxD) = pDxD) = p(DII) p(x[D, 1)
L(x) x m(x) = = Z x p(x)
likelihood x prior = joint =  evidence X posterior
INPUT = . == OUTPUT

To fully evaluate the posterior p(x) = L (x)7t(x)/Z we have to
evaluate integrals of the form

zz//.../dx/:(x) 72(x)

Often this can only be done numerically, so we need an efficient
method of calculating high-dimensional integrals
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Nested Sampling

v

Nested sampling is another kind of technique useful for
high-dimensional integration and posterior sampling [2, 3]

\{

Advantages over MCMC: can handle pathologies in parameter
spaces such as strong non-linear correlations and requires fewer
samples (up to a factor 100 less) for evidence calculation

v

The algorithm gives results that allow for model selection as well
as best parameter estimates at once

\4

Several packages available in Python [4, 5]

\4

Basic concept: use a likelihood ordering scheme to evaluate

integrals like
Z://.../dx £ (%) 7(x)
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Basics of Nested Sampling

\’\:1:}\
N
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Sample N objects x with respect to the
prior such that £ (x) > L*

Start with £* = 0, so that sampling
begins over the entire prior

We uniformly sample (L"), the
proportion of the prior with
likelihood greater than £

R

x)>L"
Slowly increase L£" so that we end up

sampling in the high probability

region
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Analogy: Riemann and Lebesgue Integration

The concept is similar to Lebesgue integration

Riemann

v

Integrate

Lebesgue

Integrate

Rather than partition the domain of £ into subintervals, we partition
the range of £ and integrate “up the hill”
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Iteration Step

The algorithm in practice:

- A N @ Start with N objects restricted to
—— oo o ¢<¢
0 worst &* 1

> Select the object with the largest ¢
(and hence smallest £)

/_H (b) .
) » Use the worst object’s (&, £) as the

AT i new (¢*, L") and then toss out the
worst object

— (¢} » There are now N — 1 objects in the

ot { new domain bounded by ¢*, which is

nested inside the old domain

» Generate a new object inside the
smaller domain by uniformly
sampling the prior

» Restart the loop, and proceed until

L= Lmax
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Calculation of Marginal Evidence

» The shrinkage ratio t = {/¢* at each iteration is distributed as
p(t) = NtV~1,  withmean In(t) = (~14+1)/N

» At each iteration k,
k
,Ck:,c* and gk:':*l—[t]
j=1

» Each shrinkage ratio is independently distributed according to
p(t) so
Ing = (k£ vk)/N

» IfInt = —1/N then ¢y = exp (—k/n), and we can evaluate
1
z= [ L@de~ L,
k

where Iy = i1 — Gk = Ak
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Generating Quantities from the Posterior Distribution

» Each sequence in the parameter space {x;} has an associated
weight
i Ly
Wk ="
where h = Al and Z = Y h Ly

» The weights define the posterior PDF. Any quantity f(x) can be
generated from the posterior in the usual way:

<f>:;wkf(xk)
{f) :;wk}d(xk)
var (f) = (f*) — (f)
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Uncertainty in Z

» Given the estimate of Z, we can calculate the information or
negative entropy

hy Ly Ly
H = / p(&) In[p(g)] d¢ ~ Z ~ In [Z}
~ (# active components in data) x In (signal/noise)

» If we count until k = NH then the accumulated values of In ¢ are
subject to an uncertainty vVNH /N

» This uncertainty also applies to In Z, so that

InZ =~ In <th £k> + ﬂ
p N

» Convergence criterion: no rigorous approach. Use your judgment.
Typical: choose upper limit on the number of iterations

Segev BenZvi (UR) 10/ 19



Lighthouse Problem
Example

A lighthouse is somewhere off the coast at position « along the shore

and B out to sea. It emits a series of short collimated flashes at random
intervals (and hence, random azimuths)

Lighthouse

i,

i

N flashes are detected at positions {x;} along the coast. Given the
{xx}, where is the lighthouse?
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Parameterization of the Lighthouse Problem

» Since the lighthouse emissions are random, the azimuth angle of
the k' emission is uniform over 6 = +90°:

p(Okla, B, 1) =1/m
» The azimuth angle is related to the position along the coast x; by
Btan by = xp —«

» Change variables to find the likelihood of the x;:

00
bl B, 1) = p(Okla, B, 1) \a—i

(5 e
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B sec? 9% =1

B[1 + tan? 9]% =B




Parameterization of the Lighthouse Problem

» Using the Jacobian we find the likelihood of the x;:

p(xk’“/:g/I) = 7.[[52 ¥ ngk _ 06)2]
N

p(xla, B, 1) = [ [ (il B, 1)

k=1

» What we really want is the posterior distribution of «:

pla Bl 1) = Zp(ela, B, 1) pla BID),

where we expect that p(«, B|I) = p(a|I)p(B|I) is uniform:

p(DC,‘B“) _ {(xmaxlamm ﬁmaxlﬁm/ LS [“min/ “max]r,B S [,Bmin/ ,Bmax]

0 otherwise
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Calculating the Likelihood

The likelihood we use for nested sampling is

- B
E(IX;.B) = IE 7_[[‘[,}2_+_ (xk_lx)z]

InL=Ing—Inm— i (/32+ (xx —zx)z)
k=1
The algorithm we apply is:
1. Generate N values of « and f from the uniform priors
2. Calculate £ (or In £) using the N points and the {x;}
3. Pick the value with the lowest £ and set it to L£*

4. Use L* to estimate new limits a* and p* and generate new values
of w and f subject to these limits. Proceed until termination
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Lighthouse Problem

Chooose « € [—2,2] and B € [0,2]. Update a and B with uniform steps
(easy to implement; could have used a Gaussian)

2.0+
1.54
£ 10/
Q.
0.5 4
- ==
0.0 X 0000 06 cmOED 000 ®e® ¢ ®
-3 0 1 2 3

& [km]

(«, B) moves from starting point (red star) to the region of highest
probability
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Sampling of the Posterior vs. Time

Samples 1-50 Samples 100-150
2.0 . .

15 . :... .-.,‘.-
. . .

1.0{ . °

0571,

0.01_°
Samples 300-350 Samples 700-750

-2 -1 0 1 2 =2 -1 0 1 2
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Best Estimate of «, 8

» Using the liklihood weights from each sample

Wy — hkzﬁk

we can get the mean « and f:

(a) =) wia = 1.25+0.18 km
k

(B) =) _wPr = 1.01+0.20 km
k

» The estimate of the evidence InZ is
In (Z/km®) = —160.53 4 0.17

» Note that Z has dimensions of km® because of the 64 {x;}
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Highly Multimodal Distributions

Handles very multimodal distributions like the eggbox function

True Log Likelihood Surface

Note: the acceptance rate for points £ > L£* can be poor unless some

effort is made to split up the sampling region
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