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Reading

I Sivia and Skilling, Ch. 9
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Evaluating Full Posterior Distributions

Recall the types of calculations we often have to do in a Bayesian
analysis (from [1]):

p(D|x, I) p(x|I) = p(D, x|I) = p(D|I) p(x|D, I)
L (x) × π(x) = . . . = Z × p(x)

likelihood × prior = joint = evidence × posterior
INPUT =⇒ . . . =⇒ OUTPUT

To fully evaluate the posterior p(x) = L (x)π(x)/Z we have to
evaluate integrals of the form

Z =
∫∫

. . .
∫

dx L (x) π(x)

Often this can only be done numerically, so we need an efficient
method of calculating high-dimensional integrals
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Nested Sampling

I Nested sampling is another kind of technique useful for
high-dimensional integration and posterior sampling [2, 3]

I Advantages over MCMC: can handle pathologies in parameter
spaces such as strong non-linear correlations and requires fewer
samples (up to a factor 100 less) for evidence calculation

I The algorithm gives results that allow for model selection as well
as best parameter estimates at once

I Several packages available in Python [4, 5]
I Basic concept: use a likelihood ordering scheme to evaluate

integrals like

Z =
∫∫

. . .
∫

dx L (x) π(x)
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Basics of Nested Sampling

I Sample N objects x with respect to the
prior such that L (x) > L∗

I Start with L∗ = 0, so that sampling
begins over the entire prior

I We uniformly sample ξ(L∗), the
proportion of the prior with
likelihood greater than L∗:

ξ(L∗) =
∫∫

L (x)>L∗
. . .
∫

π(x) dx

I Slowly increase L∗ so that we end up
sampling in the high probability
region
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Analogy: Riemann and Lebesgue Integration
The concept is similar to Lebesgue integration

Rather than partition the domain of L into subintervals, we partition
the range of L and integrate “up the hill”
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Iteration Step
The algorithm in practice:

I Start with N objects restricted to
ξ < ξ∗

I Select the object with the largest ξ
(and hence smallest L)

I Use the worst object’s (ξ,L) as the
new (ξ∗,L∗) and then toss out the
worst object

I There are now N− 1 objects in the
new domain bounded by ξ∗, which is
nested inside the old domain

I Generate a new object inside the
smaller domain by uniformly
sampling the prior

I Restart the loop, and proceed until
L∗ = Lmax
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Calculation of Marginal Evidence
I The shrinkage ratio t = ξ/ξ∗ at each iteration is distributed as

p(t) = NtN−1, with mean ln (t) = (−1± 1)/N

I At each iteration k,

Lk = L∗ and ξk = ξ∗
k

∏
j=1

tj

I Each shrinkage ratio is independently distributed according to
p(t) so

ln ξk = (−k±
√

k)/N

I If ln t = −1/N then ξk = exp (−k/n), and we can evaluate

Z =
∫ 1

0
L (ξ) dξ ≈∑

k
hk Lk,

where hk = ξk−1 − ξk = ∆ξk
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Generating Quantities from the Posterior Distribution

I Each sequence in the parameter space {xk} has an associated
weight

wk =
hk Lk

Z
where hk = ∆ξk and Z = ∑ hk Lk

I The weights define the posterior PDF. Any quantity f (x) can be
generated from the posterior in the usual way:

〈f 〉 = ∑
k

wkf (xk)

〈f 〉 = ∑
k

wkf 2(xk)

var (f ) = 〈f 2〉 − 〈f 〉

Segev BenZvi (UR) PHY 403 9 / 19



Uncertainty in Z
I Given the estimate of Z, we can calculate the information or

negative entropy

H =
∫

p(ξ) ln [p(ξ)] dξ ≈∑
k

hk Lk

Z
ln
[Lk

Z

]
≈ (# active components in data)× ln (signal/noise)

I If we count until k = NH then the accumulated values of ln ξ are
subject to an uncertainty

√
NH/N

I This uncertainty also applies to ln Z, so that

ln Z ≈ ln

(
∑

k
hk Lk

)
±
√
H
N

I Convergence criterion: no rigorous approach. Use your judgment.
Typical: choose upper limit on the number of iterations
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Lighthouse Problem

Example
A lighthouse is somewhere off the coast at position α along the shore
and β out to sea. It emits a series of short collimated flashes at random
intervals (and hence, random azimuths)

N flashes are detected at positions {xk} along the coast. Given the
{xk}, where is the lighthouse?
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Parameterization of the Lighthouse Problem
I Since the lighthouse emissions are random, the azimuth angle of

the kth emission is uniform over θ = ±90◦:

p(θk|α, β, I) = 1/π

I The azimuth angle is related to the position along the coast xk by

β tan θk = xk − α

I Change variables to find the likelihood of the xk:

p(xk|α, β, I) = p(θk|α, β, I)
∣∣∣∣ ∂θk

∂xk

∣∣∣∣
β sec2 θ

∂θ

∂x
= 1

β[1 + tan2 θ]
∂θ

∂x
= β

[
1 +

(
x− α

β

)2
]

∂θ

∂x
= 1
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Parameterization of the Lighthouse Problem
I Using the Jacobian we find the likelihood of the xk:

p(xk|α, β, I) =
β

π [β2 + (xk − α)2]

p(x|α, β, I) =
N

∏
k=1

p(xk|α, β, I)

I What we really want is the posterior distribution of α:

p(α, β|x, I) =
1
Z

p(x|α, β, I) p(α, β|I),

where we expect that p(α, β|I) = p(α|I)p(β|I) is uniform:

p(α, β|I) =
{

1
αmax−αmin

1
βmax−βmin

, α ∈ [αmin, αmax], β ∈ [βmin, βmax]

0 otherwise
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Calculating the Likelihood

The likelihood we use for nested sampling is

L (α, β) =
N

∏
k=1

β

π [β2 + (xk − α)2]

lnL = ln β− ln π −
N

∑
k=1

(
β2 + (xk − α)2

)
The algorithm we apply is:

1. Generate N values of α and β from the uniform priors
2. Calculate L (or lnL) using the N points and the {xk}
3. Pick the value with the lowest L and set it to L∗
4. Use L∗ to estimate new limits α∗ and β∗ and generate new values

of α and β subject to these limits. Proceed until termination
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Lighthouse Problem
Chooose α ∈ [−2, 2] and β ∈ [0, 2]. Update α and β with uniform steps
(easy to implement; could have used a Gaussian)

−3 −2 −1 0 1 2 3
α [km]

0.0

0.5

1.0

1.5

2.0

β
[k

m
]

(α, β) moves from starting point (red star) to the region of highest
probability
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Sampling of the Posterior vs. Time
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Best Estimate of α, β

I Using the liklihood weights from each sample

wk =
hk Lk

Z

we can get the mean α and β:

〈α〉 = ∑
k

wkαk = 1.25± 0.18 km

〈β〉 = ∑
k

wkβk = 1.01± 0.20 km

I The estimate of the evidence ln Z is

ln (Z/km64) = −160.53± 0.17

I Note that Z has dimensions of km64 because of the 64 {xk}
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Highly Multimodal Distributions

Handles very multimodal distributions like the eggbox function
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Note: the acceptance rate for points L > L∗ can be poor unless some
effort is made to split up the sampling region
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