
Physics 403
The Principle of Maximum Entropy

Segev BenZvi

Department of Physics and Astronomy
University of Rochester



Reading

I Sivia [1], Ch. 5, 6.2
I P. Gregory, Bayesian Logical Data Analysis for the Physical

Sciences [2], Ch. 8
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The “Kangaroo Problem”

Example
From Gull, S.F. and Skilling, J. [3]: Suppose we are given the following
information. By observation,

I 1/3 of kangaroos are left-handed;
I 1/3 of kangaroos drink Foster’s.

How can we estimate the proportion of kangaroos that are both
left-handed (L) and drink Foster’s (F) using only this information?

Note that the problem is trickier than you may think at first glance.
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The “Kangaroo Problem”
Contingency Table

Basically, we want to construct the 2× 2 table of proportions pij

L R

F p11 p12 1/3

no F p21 p22 2/3

1/3 2/3

Known constraints:
I p11 + p12 = 1/3, since 1/3 of kangaroos drink Foster’s
I p11 + p21 = 1/3, since 1/3 of kangaroos are left-handed
I p11 + p12 + p21 + p22 = 1 (Sum Rule)

Under the constraints, what are feasible values of the pij?
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The “Kangaroo Problem”
Contingency Table

The feasible solutions to the problem have one degree of freedom,
which we’ll call z. From the constraints listed on the last slide, define
0 ≤ z ≤ 1

3 such that

L R

F 0 ≤ z ≤ 1
3

1
3 − z 1/3

no F 1
3 − z 1

3 + z 2/3

1/3 2/3

Now consider three extreme possibilities:
I Left-handedness and Foster’s drinking are independent.
I Left-handedness and Foster’s drinking are fully correlated.
I Left-handedness and Foster’s drinking are fully anti-correlated.
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The “Kangaroo Problem”
No Correlation

If L (left-handedness) and F (Foster’s drinking) are independent then

p11 = p(L, F) = p(L) · p(F) = 1
3
· 1

3
=

1
9

,

i.e., whether or not a kangaroo drinks Foster’s does not affect its
handedness.

In this case the contingency table becomes

L R

F 1
9

2
9 1/3

no F 2
9

4
9 2/3

1/3 2/3
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The “Kangaroo Problem”
Maximum Correlation

If L and F are maximally correlated then

p11 = p(L, F) = p(L|F) · p(F) = 1 · 1
3
=

1
3

,

i.e., if a kangaroo drinks Foster’s it must be left-handed.

So the contingency table becomes

L R

F 1
3 0 1/3

no F 0 2
3 2/3

1/3 2/3
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The “Kangaroo Problem”
Maximum Anticorrelation

If L and F are maximally anticorrelated then

p11 = p(L, F) = p(L|F) · p(F) = 0 · 1
3
= 0,

i.e., if a kangaroo drinks Foster’s it must be right-handed.

In this case the contingency table becomes

L R

F 0 1
3 1/3

no F 1
3

1
3 2/3

1/3 2/3
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Which is the Best Choice?

I Given these three possibilities (no correlation, maximum
correlation, maximum anticorrelation) which satisfies the
constraints, which is the best choice?

I Q: does it make sense to select either positive or negative
correlations between left-handedness and Foster’s-drinking?

I No, because there is no prior information favoring correlation or
anti-correlation

I In the absence of prior information, the
uncorrelated/independent choice

p11 = p(L, F) = p(L) · p(F) = 1
9

is the best one.
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How to Choose a Probability Distribution?

I The choice we made seems logical: there is no evidence in the data
that L and F are correlated. So treating L and F as independent is
correct, since it is unreasonable to assume a correlation if there is
no evidence for one

I This is part of a general class of problems where we try to make
an inference without enough information to evaluate a unique
probability distribution

I Principle: “of the possible probability distributions which agree
with a set of constraints, choose the one which is maximally
non-committal with regard to missing information” [2]

I So how can we be maximally non-committal?
I The greater the missing information, the more uncertain the

estimate. Therefore, make estimates that maximize the
uncertainty in the probability distribution while being maximally
constrained by the given information
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Uncertainty Maximization I

Example
Suppose we run an experiment with only two possible outcomes.
Which of the three probability distributions below have the most
uncertain outcome?

I p1 = p2 = 1
2

I p1 = 1
4 , p2 = 3

4

I p1 = 1
100 , p2 = 99

100

The outcome is most uncertain if p1 = p2.
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Uncertainty Maximization II

Example
Suppose we run an experiment with different numbers of outcomes.
Which of the three probability distributions below have the most
uncertain outcome?

I p1 = p2 = 1
2

I p1 = p2 = p3 = p4 = 1
4

I p1 = p2 = . . . = p8 = 1
8

The third distribution is the most uncertain. If there are n equally
probable outcomes, the uncertainty goes like n.
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Shannon Entropy
I You may recognize that we are restating what earlier in the

semester we called the Principle of Indifference. If there are n > 1
indistinguishable outcomes in an experiment, each possibility
should be assigned a probability 1/n

I Theorem: the uncertainty of a discrete probability distribution
{pi} is given by the entropy [4]

S(p1, p2, . . . , pn) = −
n

∑
i=1

pi ln pi.

I Assumptions: S exists, is a continuous function of the pi, and is
consistent – it gives the same answer if there are several ways of
working it out.

I Moreover, more possibilities implies more uncertainty. For
pi = 1/n,

S
(

1
n

, . . . ,
1
n

)
= nf

(
1
n

)
is a monotonic increasing function of n.
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Entropy: Coin Flipping

0 1
4

1
2

3
4 1

p1 = 1− p2

0.0
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S
=
−

∑
2 i=

1
p i

ln
p i

Entropy of Coin Flip I Consider the experiment with two
outcomes of probability p1 and p2

I Our constraint is the sum rule:
p1 + p2 = 1

I The Shannon entropy

S = −p1 ln p1 − (1− p1) ln (1− p1)

is clearly maximized at p1 = 1
2

I This is where the outcome of the
experiment is most uncertain
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Entropy: Kangaroos
We can write down the entropy for the kangaroo problem in terms of z,
the probability of kangaroos being left-handed and drinking Foster’s:

S = −
4

∑
i=1

pi ln pi

= −z ln z− 2
(

1
3
− z
)

ln
(

1
3
− z
)
−
(

1
3
+ z
)

ln
(

1
3
+ z
)

Maximizing gives

∂S
∂z

= 0 = 1 + ln z + 2
[

ln
(

1
3
− z
)
+ 1
]
−
[

ln
(

1
3
+ z
)
+ 1
]

= ln
(1/3− z)2

z(1/3 + z)

1 =
(1/3− z)2

z(1/3 + z)
=⇒ z

3
+ z2 = z2 − 2

3
z +

1
9

=⇒ z =
1
9
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Intuition: Weighted Die

Example
Suppose we have a weighted die with unknown outcomes pi, but we
are told that

mean number of dots =
6

∑
i=1

i pi = 4.

(Note: for a fair die, the mean is 3.5.)

What is the unique set of outcomes pi consistent with this constraint?

Thinking like we did in the kangaroo problem, we could make a
contingency table of all possible outcomes in N tosses and reject
everything which predicts a mean 6= 4. But this still leaves a huge
number of outcomes, even for small N.
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Weighted Die Contingency Table

Some hypotheses about the possible outcomes of tossing a die 10
times, from [2]:

ndots h1 h2 h3 h4 . . . hn
1 0/10 1/10 1/10 1/10 2/10
2 0/10 1/10 2/10 1/10 1/10
3 0/10 1/10 2/10 1/10 3/10
4 10/10 1/10 2/10 2/10 2/10
5 0/10 6/10 2/10 4/10 1/10
6 0/10 0/10 1/10 1/10 1/10
mean 4.0 4.0 3.5 4.0 3.2

There are quite a few combinations which produce a mean of 4 dots
even for just N = 10 tosses of the die.
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Intuition: Weighted Die
I The probability of a given set of outcomes n = (n1, . . . , n6) is given

by the multinomial distribution

p(n1, . . . , n6|N, p1, . . . , p6) =
N!

n1! . . . n6!
pn1

1 × . . .× pn6
6 ,

where

N = ∑
i

ni = total number of throws of the die.

I The quantity W = N!/(n1! . . . n6!), or multiplicity, represents the
number of states available to any given outcome hi.

I Without knowing the {pi} we can’t evaluate

pn1
1 × . . .× pn6

6

I Claim: the outcome hi with the largest multiplicity W is the most
probable.
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Understanding the Multiplicity

I Consider the hypothesis h1 where we roll ten 4’s. There is only
one way to do this, since

W1 =
10!

0!0!0!10!0!0!
= 1

I Now consider h4, where we roll one 1, one 2, one 3, two 4’s, four
5’s, and one 6:

W4 =
10!

1!1!1!2!4!1!
= 75600

I In other words, we expect that h4 will occur 75600 times more
often than h1 (in the absence of additional information)

I Since larger W implies a more probable hypothesis, we want to
maximize W to get the most likely state hmax with probabilities
(p1, . . . , p6)max
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The Large N Limit
I In the large N limit, W increases such that there are essentially

infinitely more ways Wmax can be realized than another very
similar probability distribution. It is very sharply peaked

I Using ln N! ≈ N ln N−N and ni = Npi, we can write

ln W = ln N!−
6

∑
i=1

ln ni! ≈ N ln N−N−
6

∑
i=1

ni ln ni +
6

∑
i=1

ni

= N ln N−N−
6

∑
i=1

Npi ln Npi +
6

∑
i=1

Npi

= N ln N−N−N

(
6

∑
i=1

pi ln pi + ln N

)
+ N

= −N
6

∑
i=1

pi ln pi

= NS
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Behavior of the Maximum

I ln W = NS =⇒ W = exp (NS)
I The ratio of the maximum Wmax to another distribution W with

entropy S is

Wmax

W
= exp [N(Smax − S] = exp (N∆S).

I.e., for large N there are effectively infinitely more ways for the
max entropy solution to be realized, as we just claimed

I The quantity 2N∆S is distributed like χ2
M−k−1 where M is the

possible number of outcomes and k is the number of constraints
[5]

I Using the χ2
M−k−1 we can calculate the range of S about Smax to

any desired confidence level in the usual way
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Shannon-Jaynes Entropy
Up to now we have claimed total ignorance of the pi, but what if there
is some prior estimate mi on the pi? Then

p(n1, . . . , nM|N, p1, . . . , pM) =
N!

n1! . . . nM!
mn1

1 × . . .×mnM
M

ln p(n1, . . . , nM|N, p1, . . . , pM) =
M

∑
i=1

ni ln mi + ln N!−
M

∑
i=1

ln ni!

=
M

∑
i=1

ni ln mi −N
M

∑
i=1

pi ln pi

= N

(
M

∑
i=1

pi ln mi −
M

∑
i=1

pi ln pi

)

= −N
M

∑
i=1

pi ln (pi/mi) = NS

Segev BenZvi (UR) PHY 403 22 / 38



Shannon-Jaynes Entropy

We are left with the generalized Shannon-Jaynes entropy

S = −
M

∑
i=1

pi ln (pi/mi)

For the continuous case,

S = −
∫

p(x) ln
(

p(x)
m(x)

)
dx

The quantity m(x) is called the Lebesgue measure and ensures that S is
invariant under the change of variables x→ x′ = f (x) since m(x) and
p(x) transform in the same way.
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MaxEnt and the Principle of Indifference

I We want to find a set of probabilities p1, . . . , pn that maximizes

S(p1, . . . , pn) = −
n

∑
i=1

pi ln pi.

I If all of the pi are independent, this implies

dS =
∂S
∂p1

dp1 + . . . +
∂S
∂pn

dpn = 0

I But if the pi are independent, then all of the coefficients are
individually equal to 0.

I Conclusion: all of the pi are equal, i.e., pi = 1/n
I Hence, the Principle of Maximum Entropy is just a formal

statement of the Principle of Indifference.
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MaxEnt and Constraints
Lagrange Undetermined Multipliers

I Suppose we impose a constraint on the pi of the general form
C(p1, . . . , pn) = 0. Then

dC =
∂C
∂p1

dp1 + . . . +
∂C
∂pn

dpn = 0

I We can combine dS and the constraint dC using a Lagrange
multiplier:

dS− λdC = 0

and therefore

dS− λdC =

(
∂S
∂p1
− λ

∂C
∂p1

)
dp1 + . . . +

(
∂S
∂pn
− λ

∂C
∂pn

)
dpn = 0

We set the first coefficient to zero, letting us solve for λ and giving
M simultaneous equations for the pi.
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Normalization Constraint
Derivation of Uniform Distribution

I Let’s start from the minimal possible constraint on the pi:

C =
n

∑
i=1

pi = 1

I Therefore, from dS− λdC = 0 we have

d

[
−

M

∑
i=1

pi ln (pi/mi)− λ

(
M

∑
i=1

pi − 1

)]
= 0

d

[
−

M

∑
i=1

pi ln pi +
M

∑
i=1

pi ln mi − λ

(
M

∑
i=1

pi − 1

)]
= 0

M

∑
i=1

(
− ln pi − pi

∂ ln pi

∂pi
+ ln mi − λ

∂pi

∂pi

)
dpi = 0

M

∑
i=1

(− ln (pi/mi)− 1− λ) dpi = 0
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Normalization Constraint
Derivation of Uniform Distribution

I Allowing the pi to vary independently implies that all of the
coefficients must vanish, so that

− ln (pi/mi)− 1− λ = 0 =⇒ pi = mie−(1+λ)

I Since ∑ pi = 1 and ∑ mi = 1,

1 =
M

∑
i=1

pi =
M

∑
i=1

mie−(1+λ) = e−(1+λ)
M

∑
i=1

mi = e−(1+λ)

Thus, λ = −1 and
pi = mi

I If our prior information tells us that mi = constant, then pi
describe a uniform distribution.
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Exponential: Mean Constraint
Suppose we have two constraints:

I ∑M
i=1 pi = 1 (usual normalization constraint)

I ∑M
i=1 yipi = µ (known mean of observations yi)

For example, we might know the average number of dots on many
throws of a die but not the results of individual throws. In this case,
we need two multipliers for the two constraints:

d

[
−

M

∑
i=1

pi ln (pi/mi)− λ

(
M

∑
i=1

pi − 1

)
− λ1

(
M

∑
i=1

yipi − µ

)]
= 0

M

∑
i=1

(
− ln pi/mi − pi

∂ ln pi

∂pi
− λ

∂pi

∂pi
− yiλ1

∂pi

∂pi

)
dpi = 0

M

∑
i=1

(− ln pi/mi − 1− λ− yiλ1) dpi = 0
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Exponential: Mean Constraint

For all pi, we require

− ln pi/mi − 1− λ− yiλ1 = 0

pi = mi e−(1+λ) e−λ1yi

Applying the two constraints gives

M

∑
i=1

pi = 1 = e−(1+λ)
M

∑
i=1

e−λ1yi

M

∑
i=1

yipi = µ =
∑M

i=1 yimi e−λ1yi

∑M
i=1 mi e−λ1yi

For a given µ, one can numerically solve for λ1.
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Exponential: Mean Constraint

The discrete condition

pi = mi e−(1+λ) e−λ1yi

can be generalized to the continuous distribution p(y|I):

p(y|I) = m(y) e−(1+λ) e−λ1y

If m(y) = constant then

p(y|I) ∝ e−λ1y

=
1
µ

e−y/µ, y ≥ 0

Hence, given a fixed mean observable the maximum entropy
distribution of pi (or p(y)) is an exponential distribution.
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Gaussian: Mean and Variance Constraint
I Suppose you have a continous variable x and you constrain the

mean to be µ and the variance to be σ2:∫ xH

xL

p(x) dx = 1∫ xH

xL

x p(x) dx = µ∫ xH

xL

(x− µ)2 p(x) dx = σ2

I In the limit that the variance is small compared to the range of the
parameter, i.e.,

xH − µ

σ
� 1 and

µ− xL

σ
� 1

then it turns out the maximum entropy distribution with this
variance is Gaussian:

p(x) =
1√
2πσ

e−(x−µ)2/2σ2
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Utility of the Gaussian

I Suppose your data are scattered around your model with an
unknown error distribution.

I It turns out that the most conservative thing you can assume (in a
maximum entropy sense) is the Gaussian distribution.

I By “conservative” we mean that the Gaussian will give a greater
uncertainty than what you would get from a more appropriate
distribution based on more information.

I Wait, isn’t that bad?
I No: for model fitting, a Gaussian model of the uncertainties is a

safe choice. Other distributions may give you artificially tight
constraints unless you have appropriate prior information.
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Application: Lossy Image Reconstruction

I The most well-known use of
maximum entropy techniques is
the reconstruction of images with
noise or lost pixels

I This is quite a common issue in
physics and astronomy

I Example: consider a CCD image
of a star field contaminated with
pixel noise. How can we ID real
stars on top of the background of
noise fluctuations?

I Reconstructing damaged film is
also a plot point in countless
movies...
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Application: Hollywood
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Image Reconstruction
We want to obtain the most probable image for incomplete and noisy
data. Using notation from Gregory [2],

B ≡ proposition representing prior information
Ii ≡ proposition representing a particular image

Applying Bayes’ Theorem, we want to solve

p(Ii|D, B) ∝ p(D|Ii, B) p(Ii|B)
If the image consists of M pixels (j = 1→ M) with measurement dj,
prediction Iij, and indepdent identically distributed Gaussian noise σj,

p(dj|Iij, B) ∝ exp

[
−1

2

(
dj − Iij

σj

)2
]

p(D|Ii, B) ∝
m

∏
j=1

exp

[
−1

2

(
dj − Iij

σj

)2
]
= exp

[
−χ2

2

]
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Image Reconstruction

Suppose we make trial images Ii by taking N quanta/blobs and
randomly populating the M pixels. Then

p(Ii|B) =
N!

n1! . . . nM!
1

MN =
W

MN

For large N, ln W → NS, and therefore

p(Ii|B) =
1

MN eNS.

Since we don’t know the number of quanta/blobs in the image in
general, we write p(Ii|B) = exp (αS) and maximize

p(Ii|D, B) = exp
(

αS− χ2

2

)
.
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Example Image

I Fully Bayesian approach:
marginalize α, use prior
information (pi/mi) to enforce
smoothness

I Example images from Gregory
[2], taken from S.F. Gull

I Left, middle: blurred image with
high noise, reconstructed at right

I Left, bottom: blurred image with
low noise, reconstructed at right

I Does this seem familiar?
I This is just the Bayesian form of

unfolding, accounting for blur
(instrumental “smearing”) and
noise

Segev BenZvi (UR) PHY 403 37 / 38



References I

[1] D.S. Sivia and John Skilling. Data Analysis: A Bayesian Tutorial.
New York: Oxford University Press, 1998.

[2] P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences.
Cambridge, UK: Cambridge University Press, 2005.

[3] Gull, S.F. and Skilling, J. “The Maximum Entropy Method”. In:
Indirect Imaging. Ed. by Roberts, J.A. Cambridge, UK: Cambridge
University Press, 1984.

[4] Claude E. Shannon. “A Mathematical Theory of
Communication”. In: Bell Sys. Tech. J. 27 (1948), pp. 379–423.

[5] E.T. Jaynes. “On the Rationale of Maximum Entropy Methods”.
In: Proc. IEEE 70 (1982), pp. 939–952.

Segev BenZvi (UR) PHY 403 38 / 38


