1-MJ, Wetted-Foam Target-Design Performance for the National Ignition Facility

Including imprint, power balance, surface, and ice roughness

Tim Collins

Research Review
16 February 2007
A 1-MJ wetted-foam target will ignite on the NIF with baseline direct-drive laser smoothing

- A deuterium–tritium (DT)-saturated polymer foam, or “wetted-foam,” ablator provides better performance than the baseline direct-drive, all-DT design.

- Low implosion velocity is used to minimize the effects of laser imprint.

- A nonuniformity budget analysis shows that single-beam nonuniformity has the greatest effect on target performance.

- Simulations, including power imbalance, outer-surface and ice-surface roughness, and imprint show that with 2-D, 1-THz SSD smoothing this target ignites and produces a gain of 32.

- This design has been re-optimized using a downhill simplex method, achieving a 2-D gain of 60 with 2-D SSD and the same sources of nonuniformity.

- A 1.5-MJ wetted-foam design achieves a gain of over 30 with 2-D SSD and fails with 1-D SSD.

Summary
Collaborators

R. Betti
T. R. Boehly
V. N. Goncharov
D. R. Harding
J. P. Knauer
J. A. Marozas
R. L. McCrory
P. W. McKenty
P. B. Radha
S. Skupsky
J. Zuegel
Outline

- Wetted foams and the 1-MJ design
- Sources of implosion nonuniformity
- Nonuniformity budget
- Integrated 1-MJ wetted-foam simulations
- Automatic target optimization
- 1.5-MJ wetted-foam design
- Experimental plans
At 1.5 MJ, the all-DT design is projected to give a 1-D gain of 45

- Stability is gauged by the ratio of the rms bubble amplitude to the shell thickness $A/\Delta R$ determined with a 1-D post-processor.*

<table>
<thead>
<tr>
<th></th>
<th>All-DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MJ)</td>
<td>1.5</td>
</tr>
<tr>
<td>Target radius (μm)</td>
<td>1695</td>
</tr>
<tr>
<td>Absorption (%)</td>
<td>65</td>
</tr>
<tr>
<td>$A/\Delta R$ (%)</td>
<td>30</td>
</tr>
<tr>
<td>1-D gain</td>
<td>45</td>
</tr>
</tbody>
</table>

$\langle \alpha \rangle = 4.2$

$\alpha = P/P_{\text{Fermi}}$

The 1.5-MJ all-DT design has been scaled to 1 MJ, resulting in lower gain and stability.

<table>
<thead>
<tr>
<th></th>
<th>All-DT</th>
<th>Scaled All-DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MJ)</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Target radius (μm)</td>
<td>1695</td>
<td>1480</td>
</tr>
<tr>
<td>Absorption (%)</td>
<td>65</td>
<td>59</td>
</tr>
<tr>
<td>$A/ΔR$ (%)</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>1-D gain</td>
<td>45</td>
<td>40</td>
</tr>
</tbody>
</table>
Wetted foam provides higher laser absorption, allowing a thicker shell and greater stability than the all-DT baseline target at 1 MJ.

- The foam density balances higher absorption with increased radiative preheat.
- The foam-layer thickness is chosen so the foam is entirely ablated.

<table>
<thead>
<tr>
<th></th>
<th>All-DT</th>
<th>Scaled All-DT</th>
<th>Wetted-foam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MJ)</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Target radius (μm)</td>
<td>1695</td>
<td>1480</td>
<td>1490</td>
</tr>
<tr>
<td>Absorption (%)</td>
<td>65</td>
<td>59</td>
<td>86</td>
</tr>
<tr>
<td>(A/\Delta R) (%)</td>
<td>30</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>1-D gain</td>
<td>45</td>
<td>40</td>
<td>49</td>
</tr>
</tbody>
</table>

The 1-D, 1-MJ wetted-foam target gain is 49.
The shell stability can be increased by lowering the implosion velocity and raising the in-flight shell thickness

- The most-dangerous Rayleigh–Taylor modes feed through to the inner surface and have wavelengths comparable to the shell thickness, with wave numbers \(k \sim \Delta R^{-1} \).

- The linear growth of these modes depends on the in-flight aspect ratio, IFAR:
 \[
 \text{Number of e foldings} = \gamma t \sim \sqrt{kgt^2} \sim \sqrt{\frac{R_0}{\Delta R}} \equiv \text{IFAR}
 \]

- The in-flight aspect ratio depends mainly on the implosion velocity and average adiabat:*
 \[
 \text{IFAR} \sim \frac{V^2}{\langle \alpha \rangle^{3/5}}
 \]
 where \(\alpha = P/P_{\text{Fermi}} \) is the adiabat.

The foam design has a thicker shell and lower implosion velocity than the scaled all-DT design.

<table>
<thead>
<tr>
<th></th>
<th>(V (\mu m/\text{ns}))</th>
<th>(\Delta R (\mu m))</th>
<th>IFAR</th>
<th>(A/\Delta R) (%)</th>
<th>Areal density (\rho R) (g cm(^{-2}))</th>
<th>Margin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-MJ All-DT</td>
<td>430</td>
<td>285</td>
<td>69</td>
<td>33</td>
<td>1.1</td>
<td>45</td>
</tr>
<tr>
<td>Wetted foam</td>
<td>372</td>
<td>323</td>
<td>28</td>
<td>11</td>
<td>1.4</td>
<td>30</td>
</tr>
</tbody>
</table>

- This improvement comes at the expense of margin, but with improved areal density.
- Margin = inward moving kinetic energy at ignition
 \[\frac{\text{peak inward kinetic energy}}{V} \]
- The wetted-foam design tolerates realistic ice roughness in 2-D simulations, indicating sufficient margin.
Conventional ICF must operate within an IFAR window

- If the IFAR is too high, ignition is quenched by hydrodynamic instabilities.
- If the IFAR is too low, the resulting low implosion velocity results in too low a hot-spot temperature:
- The minimum energy for ignition scales as $E \sim (\text{IFAR})^{-3^{*}}$

Shell stability and compressibility depend on the adiabat

- Minimum energy required for ignition: \(* \), ** \(E_{\text{min}} \sim \alpha^{1.88} \)
- Rayleigh–Taylor instability growth rate: \(\gamma = \alpha_{RT} (\text{kg})^{1/2} - \beta_{RT} kV_a, V_a \sim \alpha^{3/5} \)

A direct-drive capsule must tolerate several sources of nonuniformity to ignite and burn.

- Wetted-foam microstructure is a potential source of shock nonuniformity.
Foam microstructure is predicted to have minimal effect on target performance.

- High-resolution adaptive-mesh-refinement hydro simulations of the wetted-foam microstructure were used to investigate shock propagation.*

- After initial undercompression,** the flow variables asymptote to the Rankine–Hugoniot values within a few percent.

- The fluctuation decay scale length is \(\lesssim 2 \, \mu m \).

This allows simulation of wetted-foam layers as a homogeneous mixture.

Nonuniformities: Power Imbalance

Power imbalance has little effect on target performance

- The NIF beam-to-beam imbalance perturbation is 8% rms.
- Beam mistiming of the picket has been shown to have little effect on target performance.*
- The time-dependent illumination spectra taken from a series of power-imbalance histories** were simulated using modes $\ell = 2$ to 12.
- The average gain reduction due to these effects was $\sim 6\%$.

* R. Epstein et al., BAPS 50, 8114 (2005).
Nonuniformities: Ice Roughness

The wetted-foam design can tolerate a 1.75-μm-rms initial ice roughness with little reduction in gain.

- The ice-roughness spectrum is given by $A_\ell = A_0 \ell^{-2}$, primarily in $\ell < 50$.

1.75-μm-rms ice roughness
(No other nonuniformities)

β-layered cryogenic all-DT target fabrication at LLE has achieved 1-μm ice roughness.*

* Craig Sangster, QT1.00001.
Nonuniformities: Surface Roughness

Foam shells have been fabricated at General Atomics with outer-surface rms roughness as low as \(\sim 500 \) nm.

- This spectrum also shows an \(\ell^{-2} \) dependence.

A 2-D simulation modeling this spectrum as ribbon modes showed negligible reduction in performance.

A weighted average $\bar{\sigma}$ of the ice nonuniformity at the end of acceleration is used to predict target performance

- Given the same initial amplitude, ice modes with $\ell > 10$ are more effective at reducing the hot-spot size and quenching burn.*

- A weighted average of the spectrum has been shown to map to target gain:**

$$\bar{\sigma}^2 = 0.06 \sigma_{\ell < 10}^2 + \sigma_{\ell > 9}^2$$

The target performance is estimated using the sum in quadrature of $\bar{\sigma}$ contributions from each source of nonuniformity.

Nonuniformities: Imprint

The parameter $\overline{\sigma}$ increases rapidly as SSD smoothing is decreased

- Multimode simulations incorporating imprint modes $\ell = 2$ to 100 were simulated in 2-D with different levels of SSD.
- Modes $\ell > 100$ do not feed through effectively, contributing negligibly to the ice roughness at the end of the acceleration phase.

$\overline{\sigma}$ values for imprint alone are shown.
2-D SSD appears to be required for target ignition

Sources of nonuniformity included 1-μm ice roughness, power imbalance, surface roughness, and imprint

<table>
<thead>
<tr>
<th></th>
<th>$\bar{\sigma}$ (μm)</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D SSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 1 cc</td>
<td>0.94</td>
<td>21</td>
</tr>
<tr>
<td>1 × 1 cc</td>
<td>1.00</td>
<td>16</td>
</tr>
<tr>
<td>1-D SSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 0 cc</td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td>I.D. SSD</td>
<td>7.3</td>
<td>0</td>
</tr>
</tbody>
</table>

![Graphs showing density and z-axis data for different SSD conditions]
A completed 2-D simulation with 2-D, 1-THz SSD produced a gain of 32

- Integrated simulations include imprint, power imbalance, foam-surface nonuniformity (370-nm rms), and 0.75-μm initial ice roughness.

- $R_{\text{hot spot}} = 40 \mu m$, neutron-averaged fuel areal density = 1.31 g cm$^{-2}$.
2-D SSD smoothing appears to be needed for ignition for the 1-MJ wetted-foam design.
2-D SSD smoothing appears to be needed for ignition for the 1-MJ wetted-foam design

Acceleration phase

1-D 1-THz SSD

2-D 1-THz SSD
2-D SSD smoothing appears to be needed for ignition for the 1-MJ wetted-foam design

Deceleration phase

1-D 1-THz SSD

2-D 1-THz SSD
Re-optimized 1-MJ design

The 1-MJ wetted-foam design has been optimized in 1-D with a simplex method

- A *simplex* is a polyhedron in n dimensions with $n + 1$ vertices.
- The lowest point is reflected across the plane connecting the others.
- The points in the pulse shape (power, time) and target dimensions may be optimized.
- This design was optimized to maximize gain, requiring $\rho R \geq 1.4 \text{ g cm}^{-2}$ and $v_{\text{imp}} \leq 380 \mu \text{m/s}$.

This method allows tuning of more variables than would be feasible by hand (in this case, seven).
The re-optimized design has higher gain and implosion velocity, and comparable IFAR

- Picket power, foot length, foot power, drive-pulse power, layer thicknesses and target radius were varied.
- The result is robust to pulse-shape variations.

<table>
<thead>
<tr>
<th></th>
<th>V (μm/ns)</th>
<th>Gain</th>
<th>IFAR</th>
<th>Λ/ΔR (%)</th>
<th>ρR (g cm⁻²)</th>
<th>Margin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>372</td>
<td>45</td>
<td>28</td>
<td>11</td>
<td>1.4</td>
<td>30</td>
</tr>
<tr>
<td>After</td>
<td>380</td>
<td>60</td>
<td>30</td>
<td>6</td>
<td>1.4</td>
<td>40</td>
</tr>
</tbody>
</table>
The re-optimized design has comparable nonuniformity at the end of the acceleration phase.

- Power imbalance, imprint, surface and ice roughness are included.
1.5-MJ Wetted-Foam Design

A 1.5-MJ wetted-foam target ignites with 2-D SSD but not with 1-D SSD

- A low-IFAR, wetted-foam design, based on the 1.5-MJ all-DT point design, was simulated with power imbalance, surface and ice roughness and imprint.

<table>
<thead>
<tr>
<th></th>
<th>V (μm/ns)</th>
<th>Gain</th>
<th>IFAR</th>
<th>A/ΔR (%)</th>
<th>ρR (g/cm²)</th>
<th>Margin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-DT pt. design</td>
<td>450</td>
<td>45</td>
<td>60</td>
<td>30</td>
<td>1.2</td>
<td>40</td>
</tr>
<tr>
<td>1.5-MJ foam</td>
<td>409</td>
<td>44</td>
<td>33</td>
<td>5</td>
<td>1.4</td>
<td>40</td>
</tr>
</tbody>
</table>

![Graph showing density distribution](image)
Future Experiments

Foam targets are produced by General Atomics and filled and diagnosed at LLE

- Ice roughness in cryogenic wetted-foam targets is currently diagnosed with limited sensitivity using optical shadowgraphy.
- With optical illumination it is difficult to distinguish the various interfaces and layers.
- X-ray phase-contrast imaging is being implemented at LLE, promising greater sensitivity.

\[
\text{Phase-contrast image of a cryogenic DT-filled foam target*}
\]

Both planar and spherical wetted-foam experiments are being planned at LLE

- VISAR has been used to diagnose shock speeds in planar experiments with foams wetted with liquid D$_2$, driven by two 100-ps pulses.

- Planar cryogenic experiments will address shock timing and coupling efficiency.

- Progress with β-layering of cryogenic DT targets at LLE gives confidence in high-quality wetted-foam layering.
A D_2-wetted-foam test implosion produced the highest cryogenic D_2 yield to date

- A high-adiabat pulse was used.
- The yield was $Y_{1n} = 1.7 \times 10^{11}$, 16% greater than the 1-D yield.
- The target was not well characterized, contributing to computational uncertainty.
- There remains much scope for experimental exploration.

Unfilled foam capsule
Filled cryogenic capsule
X-ray image of the imploded core
Summary/Conclusions

A 1-MJ wetted-foam target will ignite on the NIF with baseline direct-drive laser smoothing

- A wetted-foam ablator provides greater laser coupling and better performance than the baseline direct-drive all-DT design.
- Low implosion velocity is used to minimize the effects of laser imprint.
- A nonuniformity budget analysis shows that the single-beam nonuniformity has the greatest effect on target performance.
- Simulations, including power imbalance, outer-surface and ice-surface roughness, and imprint show with 2-D, 1-THz SSD smoothing this target ignites and produces a gain of 32.
- This design has been re-optimized using a downhill simplex method, achieving a 2-D gain of 60 with 2-D SSD and the same sources of nonuniformity
- A 1.5-MJ wetted-foam design achieves a gain of over 30 with 2-D SSD and fails with 1-D SSD.
- Future plans include both planar and converging experiments with wetted foams on OMEGA.
This design is robust due to shock mistiming

- Sensitivity to shock mistiming is determined in 1-D by varying the foot-pulse duration.
- This design can tolerate ± 200 ps in shock-timing variation.
Modes $\ell > 100$ contribute negligibly to the ice roughness at the end of acceleration.

- Modes feed through to the inner surface, attenuated by $\exp(-k\Delta R)$.
- The resulting ice spectrum at the end of acceleration is dominated by modes $\ell < 100$, with over 99% of the rms due to these modes.

V. Goncharov et al., Phys. Plasmas 7, 2962 (2000).
1-D SSD asymptotes much sooner than 2-D SSD

- SSD smooths efficiently down to a mode number of
 \[\ell_{\text{min}} = \frac{2\pi R_0}{(2F\Delta\theta)} \sim 4, \]
 where \(F \) is the focal length and
 \(\Delta\theta^2 = \Delta\theta_1^2 + \Delta\theta_2^2 \) is the effective far-field divergence.

- 1-D SSD smoothes at the same rate, but asymptotes much earlier than 2-D SSD.
A completed 2-D simulation with 2-D, 1-THz SSD, and an ice power-law index of 1 produced a gain of 27

- Integrated simulations include imprint, power imbalance, foam-surface nonuniformity (370-nm rms), and 1-μm initial ice roughness.
- An ice power-law index of $\beta = 1$ is used, determined experimentally from DT-ice layers at LLE.

$R_{\text{hot spot}} = \sim 35 \mu m$, neutron-averaged fuel areal density $= 1.32 \text{ g cm}^{-2}$.
The pulse shape is within the limits of NIF pulse-shaping capabilities

- Pulses on the NIF are decomposed into a series of Gaussian impulses and filtered with a 1-GHz, low-pass filter.
Beam-to-beam imbalance imposes long-wavelength perturbations on the target

- Beam port locations contribute a perturbation of $\sim 1\%$ in $\ell = 6$.
- Beam-to-beam imbalance is dominated by modes $\ell = 2$ to 12, with an amplitude of $\sim 1\%$.
- Beam mistiming contributes ~ 5 to 15% in modes $\ell = 1$ to 3, primarily during the picket.