
Homework 8 – April 12, 2006 Solution prepared by Tobin Fricke
Physics 404 – Linear Algebra Prof. S.G. Rajeev, Univ. of Rochester

19. Eigenvalues of a 2 × 2 Hermitian matrix. Let A =
(

a b
b∗ d

)
where a, d are real numbers and

b is some complex number.

(a)Find the eigenvalues and corresponding eigenvectors of A.

A nonzero vector v and a scalar λ are an eigenvector and associated eigenvalue of an operator A if the
following relation holds:

Av = λv (1)

We can rewrite that in the following way, where I denotes the identity operator:

Av − λv = 0

(A− λI)v = 0

We see that the operator A − λI must be singular for it to send a non-trivial vector v to zero. An
operator is singular if and only if its determinant vanishes. We may solve for the values of λ that
produce a singular operator A−λI; the resulting equation is called the characteristic polynomial of A:

det(A− λI) = 0 (2)

To solve this particular problem, we substitute in the given 2×2 matrix for A, and the two dimensional
identity matrix for I:

det
{(

a b
b∗ d

)
− λ

(
1 0
0 1

)}
= det

(
a− λ b
b∗ d− λ

)
= (a− λ)(d− λ)− |b|2 = 0

We find a quadratic equation for λ

λ2 − (a+ d)λ+ (ad− |b|2) = 0

whose solutions may be found using the quadratic equation:

λ =
1
2

(
(a+ d)±

√
(a+ d)2 − 4(ad− |b|2)

)
λ =

1
2

(
(a+ d)±

√
(a− d)2 + 4|b|2

)
Note that the eigenvalues are both real-valued, as we expect for hermitian matrices, and that in the
limiting case of a diagonal matrix (b→ 0), the eigenvalues are exactly the diagonal elements a and d.

Also, you might notice that the terms appearing in the characteristic polynomial suspiciously resemble
the trace and determinant of the matrix. It turns out that the trace and determinant appear as
coefficients in the characteristic polynomial of any matrix; in particular, the determinant is always the
constant term, so the characteristic polynomial evaluated at zero will give the determinant. This can be
seen by simply looking at the definition of the characteristic polynomial. Knowing the coefficients of the
characteristic polynomial is equivalent to knowing the eigenvalues (the zeros of the polynomial); both
are independent of the choice of basis. In some fields (e.g. Mechanical Engineering), the coefficients in
the characteristic polynomial are known as ‘the invariants’ of the operator. The following hold for a
general 2× 2 matrix:
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λ2 − (tr A)λ+ (detA) = 0
λ = 1

2

(
tr A±

√
(tr A)2 − 4 detA

) (3)

To find the eigenvectors, we take our knowledge of the allowed values of λ and use the relation (A −
λI)v = 0 to find the corresponding vectors. We do this by looking for the null space of A− λI:

(
a− λ b
b∗ d− λ

) (
v1
v2

)
=

(
(a− λ)v1 + bv2
b∗v1 + (d− λ)v2

)
=

(
0
0

)
=⇒ v2 = −a− λ

b
v1

You may combine that with the requirement |v|2 = v2
1 + v2

2 = 1 if you’d like normalized eigenvectors.

(I find that the results are much more clear if the components of the eigenvector are written like this,
in terms of the eigenvalue λ, rather than substituting in the rather cumbersome expression for λ in
terms of the components of A; you’re free to do the same.)

(b) What are the conditions on a, b, d for the two eigenvalues to coincide?

The expression to the right of the ± in our expression for λ must vanish:

(a− d)2 + 4|b|2 = 0

Both terms in this, (a − d)2 and |b|2, are positive, so there’s no possibility of them cancelling out.
(Remember that a, d ∈ R and b ∈ C.) The condition for λ1 = λ2 becomes

(a = d) ∧ (b = 0)

In other words, for a 2 × 2 Hermitian matrix to have a single degenerate eigenvalue, it must be a
diagonal matrix with the two diagonal entries equal, a multiple of the identity matrix:

A =
(
λ 0
0 λ

)
20. Resolvents.

(a) Find the resolvent of A.

The resolvent of a matrix A is the inverse of that thing (A − λI) whose determinant we set to zero
to find the characteristic polynomial. If I write PA(t) = A − tI then the characteristic polynomial is
pA = detPA(t) = (t−λ1)(t−λ2) · · · (t−λn) and the resolvent is GA(t) = (A− tI)−1. Without further
ado, we may attack the problem at hand.

The inverse of a 2× 2 matrix is

A−1 =
(
a b
c d

)−1

=
1

detA

(
d −b
−c a

)
=

1
ad− bc

(
d −b
−c a

)
Using this, the resolvent is:

GA(t) = (A−tI)−1 =
(
a− t b
b∗ d− t

)−1

=
1

det(A− tI)

(
d− t −b
−b∗ a− t

)
=

1
pA(t)

(
d− t −b
−b∗ a− t

)

(b) Find the resolvent’s singularities and the residues at these singularities.
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Clearly the resolvent has a singularity (a pole) wherever the characteristic polynomial has a zero,
namely at the eigenvalues of A.

The residue of an mth-order poleof a function f(z) at z0 may be calculated as

res {f(z); z0} = lim
z→z0

{
1

(m− 1)!

(
∂

∂z

)m−1

(z − z0)mf(z)

}
(4)

Assuming that the two eigenvalues are distinct, then each pole will be a simple pole (a pole of order
1), so we have:

res {GA(z);λn} = lim
z→λn

{(z − λn)GA(z)}

res {GA(z);λn} = lim
z→λn

{
(z − λn)

1
det(A− zI)

(
d− z −b
−b∗ a− z

)}
Remember that the eigenvalues λn are the roots of the characteristic polynomial det(A − λI) so we
may write det(A− zI) = (z − λ1)(z − λ2).

R1 = res {GA(z);λ1} = lim
z→λn

{
����(z − λ1)

����(z − λ1)(z − λ2)

(
d− z −b
−b∗ a− z

)}
=

1
λ1 − λ2

(
d− λ1 −b
−b∗ a− λ1

)

(c) Explain the relationship to A’s eigenvectors and eigenvalues.

What is the meaning of these matrices Rn that we get as the residues of the resolventGA(z) evaluated at
the eigenvalues λn of A? Let’s consider its eigenvalues! Since I already used λ to designate eigenvalues
of A, I’ll use α to designate eigenvalues of Rn.

det(R1 − αI) = det
1

λ1 − λ2

(
d− λ1 − α(λ1 − λ2) −b

−b∗ a− λ1 − α(λ1 − λ2)

)
Let α′ = α(λ1 − λ2).

=
1

(λ1 − λ2)2
det

(
d− λ1 − α′ −b

−b∗ a− λ1 − α′

)
=

1
(λ1 − λ2)2

(
(d− λ1 − α′)(a− λ1 − α′)− |b|2

)
=

1
(λ1 − λ2)2

(
(a− (λ1 + α′)) (d− (λ1 + α′))− |b|2

)
We recover the characteristic polynomial of A, but with a change of variable λ→ (α′ + λn)!

=
1

(λ1 − λ2)2
((α′ + λ1)− λ1)((α′ + λ1)− λ2)

=
1

(λ1 − λ2)2
(α′)(α′ − (λ2 − λ1))

Replace α′ with α(λ1 − λ2):

3

http://en.wikipedia.org/wiki/Residue_(complex_analysis)


=
1

(λ1 − λ2)2
α(λ1 − λ2)(α(λ1 − λ2)− (λ2 − λ1))

= α(α− 1)

The eigenvalues of the residue of the resolvent are exactly one and zero. Any operator which has only
ones and zeros as eigenvalues is idempotent, meaning that applying it multiple times is equivalent
to applying it only once, or P 2 = P . (In this case the result R2 = R pops out immediately if you
substitute the operator R into its own characteristic equation, α(α−1) = 0.) Such operators are called
projections. To find out onto what space the operator projects, we need to find the corresponding
eigenvectors.

It turns out that the eigenvectors of R are the same as the eigenvectors of A. Earlier we found that the
eigenvectors of a 2× 2 hermitian matrix are multiples of (1,−(a− λ)/b) where λ is the corresponding
eigenvalue. We’re interested in finding the vectors in the null space of (R − αI), where α is the
eigenvector of R under consideration.

We’ll first explore the eigenspace corresponding to α = 0 by acting with R− 0I = R on v2:

1
λ1 − λ2

(
d− λ1 −b
−b∗ a− λ1

) (
1

−a−λ1
b

)
=

1
λ1 − λ2

(
d− λ1 + a− λ2

−b∗ − (a− λ1)(a− λ2)/b

)
To simplify this expression, we need to use two facts about matrices. First, the sum of the diagonal
entries of a matrix equals the sum of the eigenvectors; this sum is called the trace of the matrix (or
operator). Second, the product of the diagonal entries of a matrix equals the product of the eigenvalues;
this product is the determinant of the matrix (or operator). In the case of our 2× 2 hermitian matrix,

tr A = a+ d = λ1 + λ2

detA = ad− |b|2 = λ1λ2

Using these we may simplify our vector:(
d− λ1 + a− λ2

−b∗ − (a− λ1)(a− λ2)/b

)
=

(
(a+ d)− (λ1 + λ2)

(−|b|2 − a2 + (λ1 + λ2)a− λ1λ2)/b

)
=

(
0
0

)
So we find that R1v2 = 0, where Av2 = λ2v2, and R1 is the residue of the resolvent of A evaluated at
λ1. Through a similar argument we can show that R1v1 = v1, i.e. that R has the same eigenvectors as
A. We find that the residue Rn of the resolvent of A at λn (an eigenvalue of the hermitian
2×2 matrix A with corresponding eigenvector vn) is a projection operator which projects
onto the space spanned by that eigenvector.

This is one result that is much easier to prove in the abstract, coordinate-free formalism. Following
[2], suppose A is a hermitian operator (on a space of arbitrary dimension); then we know that we can
form a basis of eigenvectors. Using Dirac bra-ket notation, suppose the eigenvectors are |v〉.
The “outer product” |v〉〈v| of a vector |v〉 with itself forms a projection operator onto the space spanned
by that vector. To see this, try it out on a test vector |x〉:

(|v〉〈v|)|x〉 = |v〉(〈v|x〉)

The inner product 〈v|x〉 is a scalar that may be interpreted as the magnitude of the projection of x
onto v. The additional v ket on the left provides that the result is a ket in the direction of v. Hence
the combination |v〉〈v| works as a projection operator.
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Taking {|vn〉} to be an orthonormal basis of eigenvectors of A, we can write the identity operator as
a sum of projection operators:

I =
n∑

i=0

|vi〉〈vi| (5)

Apply (from the left) the operator A to each side of this identity. Because of the eigenvalue/vector
relation A|vi〉 = λi|vi〉 we get

A =
n∑

i=0

λi|vi〉〈vi| (6)

We wish to write the resolvent GA(λ) = (A − λI)−1 in a similar format. Combining the above two
results, we can write A− λI as:

A− λI =
n∑

i=0

(λi − λ)|vi〉〈vi|

Intuitively, to invert an operator that is written as a sum of scaled projections along orthogonal
directions, we need only undo the scalings along each projection in order to invert the operator.
Formally, we have written the operator as a diagonal matrix, with entries (λi − λ) along the diagonal,
and we know that to find the inverse of a diagonal matrix we need only invert each (scalar) element
along the diagonal:

(A− λI)−1 =
n∑

i=0

(λi − λ)−1|vi〉〈vi|

To prove that this is the inverse, write (A − λI)(A − λI)−1, substitute in the summation forms, and
mltiply. By the assumption that {|vn〉} is an orthonormal basis, 〈vi|vj〉 = δij and the product of
sums turns into a single sum, the scalars in front of the projections cancel out, and we’re left with an
expansion for the identity operator. So, we’ve succeeded in finding the resolvent as a sum of projections
on normalized eigenvectors of A:

GA(t) =
n∑

i=0

|vi〉〈vi|
(λi − t)

(7)

(Notice that GA(0) has the form of the eigenvalue expansion of a Green’s function as in, for instance,
page 94 of [1].)

Now consider the residues Rn of GA(λ) at eigenvalues λn of A. The residue operation selects those
terms in the sum which have (λn − t) in the denominator. These are all simple poles, so we multiply
by (λn − t); we would then substitute t→ λn, but there are no remaining occurrances of t. We’re left
with:

Rn = res{GA(t); t = λn} =
∑

{i:λi=λn}

|vi〉〈vi| (8)

This is a direct, general expression of what we saw before: the residues of the resolvent are projection
operators onto the eigenspaces associated with the eigenvalues where we took the residues.
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21. Function spaces.

Let V be the space of all complex-valued functions of a real variable with period 2π.

A vector space is specified by a set V , a scalar field F , an operation of ‘addition’ (+ : V × V 7→ V )
between any two elements of the set, and an operation of ‘scalar multiplication’ that combines a vector
with a scalar to get another vector (· : V ×F 7→ V ). Here our set is the set of 2π-periodic complex-valued
functions of a real variable:

V = {f : R 7→ C | ∀z ∈ R, f(z + 2π) = f(z)}

We define addition and scalar multiplication of functions:

f1 + f2 : ∀f1, f2 ∈ V,∀x ∈ R (f1 + f2)(x) = f1(x) + f2(x)

αf : ∀α ∈ C,∀f ∈ V,∀x ∈ R, (αf)(x) = α(f(x))

To maintain closure under scalar multiplication, we see that the scalar field must be the complex
numbers.

(a) Find a basis for this space. What is its dimension?
From basic Fourier analysis, we know that any periodic function can be written as a sum of
complex exponentials. That set of complex exponentials is our basis:

β = {f | f(t) = eitn, n ∈ Z}

To prove that β is a basis for V , we must show that any element of V may be written as a linear
combination of elements of β, and that no element of β may be written as a linear combination
of other elements of β. These are results we know from analysis.
The dimension of a space is the cardinality of its basis, so the dimension of V is infinite.

dimV = |β| = ∞

(b) For what values of λ are there solutions in V to (∂/∂t)2ψ(t) = λψ(t)?
Differentiation is a linear operation on functions. Suppose D is the operator that takes the
derivative of a function with respect to its first argument; we can write f ′(x) as (Df)(x). We
wish to find λ such that D2f = λf , or, in other words, solve the eigenvalue problem for D2.
As with any other problem involving the characterization of operators, we need only examine
the effect of the operator D2 on the basis vectors. Let {ψn} be the set of basis vectors, with
ψn(t) = exp{itn}.

(Dψn)(x) =
∂

∂x
einx = ineinx = (inψn)(x)

D2ψn = −n2ψn

λ = −n2, n ∈ Z

We see that the allowed eigenvalues λ are λ = −n2 for integral n.
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(c) Find a basis of solutions for each such value of λ.
For any given λ, there are solutions in our space only if there is an integer n such that λ = −n2.
In this case, there are one or two eigenvectors, namely ψn where n ∈ {±

√
λ}. Either of these

eigenvectors will solve the original expression (d/dx)2ψ(x) = λψ(x), as will any linear combination
of them; this set of two vectors is a basis for the space of solutions to that equation for given
λ 6= 0.

β =
{
{exp(it

√
λ), exp(−it

√
λ)} if ∃n ∈ Z,−n2 = λ

∅ otherwise

The solutions to the equation are linear combinations of these basis vectors:

f(x) = A exp(−it
√
λ) +B exp(it

√
λ) where A,B ∈ C
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