
Dear Steve,
Below I have tried to describe how the routine works. If it is still difficult

to understand I could send some figures that should make it clearer with Fax.
Regards,
Peter

We would like to count the number of sides in the Voroni (is that the
correct name?) polygons. With paper and pen that is easily done: Focus on
one particle (vortex) and make straight lines to a few fairly near neighbors.
Bisect each such line by a perpendicular line. Some of these perpendicular
lines will now make up a polygon. Count the number of sides in this polygon.

To make a simple algorithm out of this we focus on one particle at the
time and choose the origin to be the position of that particle. We then let
ri denote the positions of a number of (≈ 10) particles that are close to the
origin. The question is how many particles that contribute to the polygon.
Note that the pen and paper method discussed above focuses on ri/2 instead
of ri because of our bisecting the line connecting the origin and ri. This is,
however, not necessary. We may just as well draw lines through ri that are
perpendicular to ri. Below we first discuss a method that over-simplifies the
problem, and then turn the real algorithm.

For each particle j we examine if its associated line contributes to the
polygon. To do that we loop over particles i and examine whether rj is
beyond the line associated with ri or not. If it is beyond such a line it cannot
contribute to the polygon. This information is given by the quantity

Sij = ri · (ri − rj).

If rj is beyond the line perpendicular to ri then Sij > 0. The condition for
rj to contribute to the polygon is therefore Sij < 0 for all i 6= j.

The above condition is, however, too restrictive. For rj to contribute to
the polygon it is instead enough that the above is true for a part of the line
associated with rj. Introduce q to parametrize the line associated with rj,

rj(q) = rj + qr⊥j .

Here r⊥j is a vector that is perpendicular to rj. With the notation rj = (xj, yj)
we can write r⊥j = (yj,−xj). The question is now if there is some interval in

1



q for which Sij(q) < 0 (with an obvious generalisation of the above equation)
for all i.

To answer that question we note that each point ri with r⊥j · ri 6= 0 gives
either an upper or a lower bound on q (depending on the sign of r⊥j · ri). In
both cases, the limiting value for q is the one that makes Sij(q) = 0:

0 = ri · (ri − rj − qr⊥j ) = Sij − qri · r⊥j

that gives
q = Sij/(ri · r⊥j )

In the program the lower and upper bounds of q are determined by a loop
over i. If it turns out that qlo ≥ qhi it is concluded that there is no part of
the line associated with rj that is within (= closer to the origin than) all
the lines associated with the other particles. Therefore the line associated
with rj doesn’t belong to the polygon. (The above condition could instead
be chosen to qlo > qhi. The case when four lines meet at the same point is
then treated differently.)

The above description should be easy to compare with the C-code with
the identification sum=S and vvperp=ri · r⊥j .

2


