

Energy budget, Unbound Mass in Common Envelope Evolution Yisheng Tu¹, Luke Chamandy¹, Eric G. Blackman¹, Jonathan Carroll-Nellenback¹, Adam Frank¹, Baowei Liu¹ and Jason Nordhaus² ¹University of Rochester, ²Rochester Institute of Technology

$GM_1M_{1,e}$ $GM_2(M_{1,c} M_1)$				
$\frac{1}{\lambda R_1} = \alpha_{CE} \frac{1}{2} \left(\frac{1}{a_f} - \frac{1}{a_i} \right)$				
$RHS\left(a_{\mathrm{f}}=7R_{\odot}\right)$				
$[10^{47} \text{ erg}]$				
1				
$a_{\rm f}(R_{\odot})$				
.6				
.1				

A common approach for qualifying envelope unbinding in CEE is the α_{CE} energy formulism. λ denotes the structure of the primary; α_{CE} denotes the efficiency of energy transfer

Based on the calculation, at the end of the simulation, we don't expect the entire envelope to unbind because α_{CE} must be less then 1 and the separation at the end of our simulation is much greater then required.

If the energy is transferred from particles to gas at a steady rate equal to that at the end of our simulation, the envelope may be ejected by $10^2 \sim 10^3$ days.

Outlook

- To unbind the envelope, simulations need to run longer
- Additional energy source and a shift in
- parameter space may also result in envelope ejection
- See poster by Luke Chamandy for accretion in CEE and core-envelope motion.

	$M_2 = 1 M_{\odot}$	$M_2 = 0.5 M_{\odot}$	$M_2 = 0.25 M_{\odot}$
Density			
Energy			