Astronomy 145 class notes

Spring 1990

2.2, THERMODYNAMICS OF PERFECT GASES

Symbol Explanation cgs unit
P gas pressure dynes cm™2
p gas density gcm™3
n gas concentration (or number density) particles cm ™3
7 mean molecular mass g
k Boltzmann’s constant 1.38 x 10— erg K1
T gas temperature K
v volume per unit mass (1/p) cm® gt
cp specific heat per unit mass at constant pressure erg K=1 g1
cy specific heat per unit mass at constant volume erg K~1 g1
ol ratio of specific heats, ¢p/cy dimensionless
e internal energy per unit mass erg g~ 1
6Q heat input per unit mass erg g~ !
s entropy per unit mass erg K—1 g1
u internal energy per unit volume erg cm 3

Eztensive quantities (i.e., those like energy, where twice as much gas implies twice as
much of the quantity) will be expressed as amounts per unit mass, e.g., e(T) = internal
energy per unit mass of gas, a measure of the kinetic energy of the molecules and atoms.

2.2.1. Ideal Gas Law

For independent, noninteracting, particles of infinitesimal size, whose pressure

comes entirely from random motions and impacts with the walls,

P = nkT ,.

or, since n = p/pu,

(2.2:1)
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or, since v =1/p,

k
Pv=—T
u

All three forms of the law are useful: the second probably the most so.

2.2.2. Zeroth Law of 'Thermody.namics
“Hot things lose heat to cool things until their temperatures are equal,”

lLe., a quantity called temperature (T') tells you how heat will flow.

2.2.3. First Law of Thermodynamics

“Heat is work and work is heat,”
i.e., heat input to gas = (increase in random motion of particles)

+ (work done changing volume of gas)

i.e.,

6Q =de+ Pdv . _ - (2.2.2)

6@ = small amount of energy input (not a function of the state of the gas,
therefore written as 6Q, not dQ)

de = change in internal energy of gas (per unit mass)

Pdv = work done (per unit mass of gas) when pressure P forces volume to
increase by dv

Now e =e(T) only: the kinetic energy of molecules in the gas, and the rotational
and vibrational energy of atoms in the molecules, are functions only of temperature.
Therefore,

de
6Q = — .
Q (dT) dT + Pdv

But if we put energy 6Q into the gas, holding its volume constant, the temperature rise,
dT, is given by

5Q=chT 3

where cy is the specific heat per unit mass at constant volume. Thus,
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de _ (2.2.3)

Now, this means that we can write the first law in the form
§Q = cy dT + Pdv

but for an ideal gas

so, differentiating,

Pdv = EdT —vdP ,
I

and therefore, in the first law,
| k
6Q = (cv+—) dT — vdP .
w

But if we put energy 6Q into the gas, holding its pressure constant, the temperature
rise is given by

§Q=deT 5

where cp is the specific heat per unit mass at constant pressure. Therefore, the specific
heats are related by '

k .
cp=cy + o (2.2.4)

Define .
o= -E — ratio of specific heats .
cy
Then
kv
CP = ik ——I
NS B
(2.2.5)
k 1 .
cy = —+ ——
g v—1
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Note the units of cp and cy: erg g7 K=, or J kg—! K1,

From equation (2.2.2),
' de = ¢y dT

so that if ¢y is a constant,
, € =cyT + constant

Define the zero of internal energy to occur at the zero of absolute temperature. Then

L (2.2.6)

s T‘:-———-———-
€ cy ﬂ(’}’—l)

We’ll sometimes also use u, the internal energy per unit volume:

el P (2.2.7)
pv—=1) -1

(Note that this says that the pressure of a gas arises directly from its internal
energy density.)

2.2.4. Second Law of Thermodynamics

“Heat cannot, of itself, pass from one body to a hotter body,”

l.e., some processes that are allowed by conservation of 'energy (the First Law)
nevertheless do not occur. This leads to the idea of entropy: define the entropy per

untt mass, s, by
6Q
ds = —
§= T |
then, from the first law [equations (2.2.1) and (2.2.2)]

dl” P
ds = cy — + —
s ch+Tdv
ATk
Vo g v

Thus,

k
s =constant + ¢y In7T + = Inv
M
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k 1

b 7 [equation (2.2.4)];
T

Use ey =

s = (constant); + ¢y In(Tw7™?)

= (constant)s + ¢y In{Pv7) (2:28)

= (constant)s + ¢y In(Pp™7) .

The last of these will be the most generally useful to us. Engineers sometimes say
that s reflects the number of lost opportunities for using the gas to do work. You may
also like to remember that s measures the degree of disorder of the gas — the number of
ways the molecules can share energy.

2.2.5. Third Law of Thermodynamics
“Everything is a perfect crystal at T = 0,”
T = 0 = perfect order = zero entropy

This gives the value of the constant in the s(P, p) relations [equation (2.2.8)], but
the third law will not be of much importance in our use of thermodynamics.

2.2.6. Stellar Structure Virial Theorem

" Assuming a star is a perfect gas in a self-gravitating sphere, we can use these
thermodynamic results and the pressure equation to deduce a virial theorem relating to
stellar structure. Start from the equation of hydrostatic equilibrium

dP _ GM(r)p(r)
dr r2
and define V (r) = volume occupied by gas inside radius r = f‘:,;:rrr3, so that dV = volume

of dr-shell, containing mass p(r) 47wr3dr.

Multiply the pressure equation by V (r) dr:

@P . GM(r) p(r)
Vir) = dr = ~——-r2—|/(r)dr ,
ie.,
V(r)dP = —GM(r) p(r) E','rra”ahr £ lG’M’(r) dM(r) 3 .
| 3 r 3 ro
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