
EOS
• Physics of the EOS

• Range of thermodynamical parameters (𝜌, 𝑇, 𝑃, 𝐸𝑖𝑛𝑡)

• Metallicity 𝑋, 𝑌, 𝑍

• Current status regarding putting into ASTROBear



Parameters

• Range of parameters in CE run 
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• −9.2 < log 𝜌 < −2.3

• 0.5 < log 𝑇 < 7.3

• 1.3 < log 𝐸(1) < 13.1

• 1.1 < log 𝑃 < 12.9

(1) From VISIT, per volume?

• Other simulations have similar 
ranges?



Ideal Gas

• Particles are classical and in motion.

• The particles have negligible volume.

• The particles don't interact. There are no attractive or repulsive forces 
between them.

• The average translational kinetic energy of the gas particles is 
proportional to temperature.



Two ways to calculate EOS

• Physical Picture (OPAL)
• Treat gas as individual particles

• Start from Grand Canonical 
Ensemble: assume a system in 
thermodynamical equilibrium with 
a heat reservoir; but allow heat 
exchange and particle exchange

• Physical but computationally 
expensive

• Chemical picture (all others)
• Consider atoms and molecules 

retain a definite identity and 
interact through pair potentials

• Solve the quantum problem first, 
then consider everything as 
“states’’

• Drawback: when pressure allows 
pressure-ionization, pair potential 
becomes meaningless



OPAL



OPAL EOS

• Considers …
• Physical picture

• Expands pressure into two-body, three-body clusters

• Non-relativistic Fermi-Dirac electron

• All stages of ionization and excitation

• Degenerate coulomb corrections

• Quantum electron diffraction

• Pressure ionization

• Ladder diagram (consider particle size)

• Accuracy to the order 𝑛𝑒
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OPAL EOS

• Limitation…
• Consider elements up to neon (anything heavier then neon is neon)

• Relative abundance of heavier elements (ignore H and He)

• above 𝑇 ∼ 109 K: pair production becomes an issue 

• Below 𝑇 ∼ 5000 K: numerical difficulty 

• Above 𝜌 ∼ 105 g cm−3: electron are relativistic.



SCVH



SCVH EOS

• Considers …
• “chemical picture”

• Uses “ (Helmholtz) free energy minimization method” 𝐹 = 𝑈 − 𝑇𝑆

• Obtained a EOS for pure hydrogen; a EOS for pure helium

• Interpolate to get values in between

• Excludes all heavier elements (Z=0)



SCVH EOS

• Hydrogen
• “plasma phase transition” (PPT): 

Pressure ionization occurs 
discontinuously through first-
order phase transition                     
(at log 𝑇𝑐 ~ 4.185)

• Considers H, H+, H2, 𝑒

• Accounts for weak diffraction in 
the interaction of heavy particles

• Helium
• Also considers Helium PPT

• Considers He, He2+, He+, 𝑒

• In between
• Interpolation and approximation



PTEH



PTEH EOS

• Based on Helmholtz free energy minimization

• Elements included are H, H+ ,H2 , He2+, He+, He, 𝑒; as well as 7 
heavier elements C, N, O, Ne, Mg, Si and Fe, which are assumed to be 
fully ionized, at all temperature and density.

• Heavy elements effects EOS insignificantly; but influences opacity 
greatly



HELM



HELM EOS

• Assume fully ionized gas (at very high temperature or density)

• Deals with electron-positron physics

• Based on Helmholtz free energy



Dragons



Proposed range

One more thing … 
Metallicity

Pair 
production

Quantum
Mechanics 

Physical & monotone



One last thing … Metallicity

• Slight variation in Metallicity is insignificant for EOS, but impacts 
greatly for opacity

• Solar metallicity
• 𝑋~ 0.74

• 𝑌~ 0.25

• 𝑍~ 0.0134

• High-metallicity star: 𝑍~0.03, theoretically people considers up to 
𝑍~0.05

• Helium abundance goes up to 𝑌~0.42 ± 0.1 for very old star cluster. 
Typical value close to that of the sun

Ref: Big orange book (Carroll & Ostlie), Pg 474 sec. 13.3
Ref:  AAS 106, 275-302 (1994) 
http://articles.adsabs.harvard.edu/pdf/1994A%26AS..106..275B
Ref: (Y abundance) 
https://arxiv.org/ftp/arxiv/papers/0811/0811.2980.pdf

http://articles.adsabs.harvard.edu/pdf/1994A%26AS..106..275B
https://arxiv.org/ftp/arxiv/papers/0811/0811.2980.pdf


−18 ≤ log 𝜌 ≤ −1 0 ≤ log 𝑇 ≤ 8
𝑍 = 0.02

𝑃 𝜌, 𝑇 and 𝐸(𝜌, 𝑇) are both monotone

𝑃 𝜌, 𝑇𝐸(𝜌, 𝑇)
• Monotonicity implies that 

in the range we choose, if 
we have two parameters 
out of 𝜌, 𝑇, 𝑃, 𝐸 , then 
the other two are 
uniquely defined.

• In other words, we only 
need two tables to create 
all others.



−18 ≤ log 𝜌 ≤ −1 0 ≤ log 𝑇 ≤ 8
EOS is monotone ∀𝑋 ≥ 0.5, 0 ≤ 𝑍 ≤ 0.1

• Proposed metallicity range
• 0 ≤ 𝑍 ≤ 0.1

• 0.5 ≤ 𝑋 ≤ 1

• This leads to 0 ≤ 𝑌 ≤ 0.5

• MESA is able to produce the

tables in the unphysical region…

(without warning)



Currently available EOS tables

• 𝑃 𝜌, 𝑇 (MESA)

• 𝐸 𝜌, 𝑇 (MESA)

• 𝑇 𝜌, 𝑃

• 𝑇 𝜌, 𝐸

• 𝐶𝑠 𝜌, 𝑇 (MESA)

• 𝐶𝑉 𝜌, 𝑇 (MESA)

• Can be calculated indirectly…
• 𝑃 𝜌, 𝐸 = 𝑃 𝜌, 𝑇 𝜌, 𝐸

• 𝐸 𝜌, 𝑃 = 𝐸 𝜌, 𝑇 𝜌, 𝑃

• Metalicity
• 𝑋 = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

• 𝑍 = 0.0, 0.02, 0.04, 0.06, 0.08, 0.10



Next step

• Putting EOS into AstroBEAR
• For tabulated 𝑧 𝑥, 𝑦 , at any 𝑥0, 𝑦0 , we can get the corresponding 𝑧0

• Test EOS



Additional info

• Metallicity: for an arbitrary (𝑋, 𝑍), using sampled values to 
approximate thermodynamical quantities differs by at most 0.05 from 
data directly obtained from MESA. (except around 𝑋 = 1, the 
difference goes up to 0.2 due to numerical difficulties). 

• Metalicity
• 𝑋 = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

• 𝑍 = 0.0, 0.02, 0.04, 0.06, 0.08, 0.10



Inversion algorithm

• Let 𝑓 = 𝑧(𝑥, 𝑦) be a monotone function where 𝑧 is defined on a 
rectangular parameter space.

• Since the data is discrete, consider 𝑧𝑥1 𝑦 , 𝑧𝑥1 𝑦 , 𝑧𝑥1 𝑦 … where 𝑧𝑥𝑖 is 
the slice at 𝑥 = 𝑥𝑖 . Reducing the variables to 1D

• Now, at the new parameter space 𝑥, 𝑧 , define an “error function” on each 
“sample point” z0: ERR 𝑦 = 𝑧 𝑦 − 𝑧0 where 𝑦 is the corresponding 𝑦
at 𝑧0. Minimize ERR 𝑦 to get the best fit using Nelder-Mead algorithm. 

• Sometimes in the python function the guess value will exceed the 
limitations of the table. So a “pseudo-function” is implemented to extend 
ERR(𝑦) to greater region (assume linear at the end)

• Do this for all 𝑧0 ∈ new parameter space, and we get the inverted table.



Inversion algorithm

• Let 𝑓 = 𝑧(𝑥, 𝑦) be a monotone function where 𝑧 is defined on a 
rectangular parameter space.

• The inversion outputs 𝑔 = 𝑦 𝑥, 𝑧 . Some values on the rectangular 
parameter space 𝑥, 𝑧 has no corresponding value. We use 𝑛𝑎𝑛 to 
take the place

• If we invert 𝑔 function again to obtain ℎ = 𝑧2 𝑥, 𝑦 . Then compare 
𝑓 − ℎ, the difference is less then 0.05 at all times (numerical 
difference, not percentage). It appears that the inverting algorithm 
only have difficulties where on the original function the first 
derivative is not continuous (otherwise the difference is practically 0).


