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1 Introduction

In this letter we examined the energy distribution for model A (run 143), and compared our result with Ohlmann’s
[2]

2 parameter comparison

In the following table, we listed the initial parameters used by our simulation and Ohlmann’s simulation

Quantity Our Simulation (Run 143, model A) Ohlmann’s Simulation [2]
Mass primary core(M1) 0.369 M� 0.38 M�
Mass Envelope gas (Mg) 1.597 M� 1.60 M�

Mass Red Giant Total (Mrg) 1.956 M� 1.98 M�
Mass Secondary core (M2) 0.978 M� 0.99 M�
Co-rotation (percentage) 0 95%

Radius of envelope (RG) (Rg) 48.1R� Unspecified (≈ 49 R�
1)

Initial separation between cores (a0) 49 R� 49 R�
Box side length (R) 1150 R� 3.3 ∗ 1014 cm (≈ 4744.78 R�)
Softening radius (rs) 2.4 R� → 1.2 R� 7.3 ∗ 1010 cm (≈ 1.0 R�)
Ambient density (ρa) 6.67 ∗ 10−9 g cm−3 10−16 g cm−3

Ambient pressure (Pa) 1.01 ∗ 105 dyn cm−2 Unspecified

As can be seen from the table, the initial values of our simulation is pretty close to those used by Ohlmann.

3 Theory

In this section we present the theory of different kinds of energies. For this project, we consider the system as a
classical system.

3.1 Kinetic energy

The kinetic energy of two particles with mass m1, m2 in a two-body problem is given by

Tp =
1

2
m1
−→v1

2
+

1

2
m2
−→v2

2
=

1

2
µ−→v 2

(1)

where
µ =

m1m2

m1 +m2
and −→v = −→v1 −−→v2 (2)

The Kinetic energy of gas is dependent on the location of the gas. Therefore we need to find the kinetic energy of
gas at each location and integrate over its volume. Therefore

Tg =
1

2

∫
V

ρ(−→r )v(−→r )2dV (3)

3.2 Internal energy

The thermal energy of a fluid is

Eint =
1

γ − 1

∫
V

P (−→r )dV (4)

where γ is the adiabatic index
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3.3 potential energy

The potential energy between two particles in Newtonian mechanics is

Up = −G m1m2

|−→x1 −−→x2|
= −Gm1m2

|−→r12|
(5)

To find the potential energy of the gas itself, We can find the potential due to gas as a function of location Φ(−→r )
and multiply that by the density of the gas at that location. The potential energy is given by

Ug =
1

2

∫
V

Φ(−→r )ρ(−→r )dV (6)

The potential energy between gas and particle can be obtained by taking the gravatational potential due to the
particle Φp(rg), mutiply by gas density and sum over all space

Up,g =

∫
V

Φp(−→rg )ρ(−→rg )dV (7)

where r1 is the location of m1

4 Method

Energy of a system can be divided into three categories: kinetic energy, potential Energy and internal energy. We
will present them one-by-one

4.1 Kinetic energy

The kinetic energy is composed of by the kinetic energy of the cores and the kinetic energy of the gas. In our
simulation, the gas was treated as a fluid, so we will use equation for fluid dynamics to calculate the energy of the
system.
The kinetic energy of the cores is given by the Newtonian kinetic energy

Tc =
1

2
mcv

2
c (8)

And the gas kinetic energy density is given by

Eg−kin =
1

2
ρgv

2
g (9)

And we sum it over the box to get the total kinetic energy f the gas.
Total kinetic energy is given by

Ttot = Tc(1) + Tc(2) +

∫
EgdV (10)

4.2 Internal energy

Due to the lack of a sub-grid model, the internal energies of the cores are both zeros. Therefore the only component
of internal energy is the internal energy of the gas (envelope)
By setup, the simulation output the sum of kinetic energy and internal energy. Therefore a quick way to calculate
the internal energy is to use the output energy Eoutput subtract the kinetic energy

Itot = Igas = Eoutput − Tgas (11)
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4.3 Potential energy

The potential energy is the most tricky one. The potential energy is divided into three sub-catagories: core-core
potential energy, gas-self potential energy and core-gas potential energy. Softening radius also effect the way we
calculate the potential energy, which we will be discuss in more detail later
Because the cores never enter the softening radius of each other, the potential energy between the cores is given by
the Newtonian potential energy

Uc = −GM1M2

r12
(12)

To compute the gas-self potential energy, we can use directly the output of the simulation. In the output, we have
the potential due to gas as a function of a radius Φg(r). To obtain the potential energy, we only need to find the
potential energy density and integrate over the entire box. The energy density and potential energy of gas-self
gravity is given by

Eg−potdV =
1

2
ρΦg(r)dV and Ug =

∫
Eg−potdV (13)

The final term to consider for potential energy is the gas-partial potential energy. Because of the existance of
softening radius, the potential energy doesn’t go as −GMm

r2 inside the softening radius. Therefore we need to divide
into two regions: outside the softening radius and inside the softening radius.
Outside the softening radius, the gravitational potential due to the cores is given by

Φc,out(r) = −GM
r

(14)

Inside the softening radius, we have two regions of refinement: region 1: between 0.5rsoft and rsoft; region 2: inside
0.5rsoft [6]
Now define a normalization factor for the distance from the core −→r

u =
|−→r |
|−−→rsoft|

(15)

In region 1, define spline 1, the modify term for gravitational potential in region 1 as

S1 = −16

3
u3 +

48

5
u5 − 32

5
u6 +

14

5
u (16)

In region, define spline 2, the modify term for gravitational potential in region 2 as

S2 = − 1

15
− 32

3
u3 + 16u4 − 48

5
u5 +

32

15
u6 +

48

15
u (17)

And by region, we define our gravitational potential by the cores as

Φc =

 Φc,out rsoft ≤ r
Φc,out × S1 0.5 rsoft ≤ r < rsoft

Φc,out × S2 r ≤ 0.5rsoft

(18)

Using same logic as previous calculation, the potential energy between the gas and cores is given by

Ugc =

∫
ρgΦcdV (19)

And total potential energy is the sum of all three terms

Utot = Uc + Ug + Ugc (20)
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4.4 Total energy

With kinetic energy, internal energy and potential energy being calculated, we can now determine the total energy
of the system

Etot = Ttot + Utot + Itot (21)

Note that when Etot is greater than zero, the system will become unbound. Because the cores clearly bounds to
each other, unless the energy of the gas overwhelms the energy of the core, we expect that the total energy to be
negative.

5 Reduced Resolution data

5.1 Time dependence of energy

We present here result from our simulation and result provided by Ohlmann’s paper

Figure 1: Energy diagram provided by Ohlmann’s paper, note that in his simulation the simulation time goes to
120 days, whereas in the next figure, our simulation only goes to 40 days.[2]
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Figure 2: Energy diagram from our simulation. The figures are energy plots from our simulation, the upper panel
is the original data, the lower panel is the data with ambient energy removed. Note that due to computational
reasons, we use the first frame as approximation to all frames, and assumes that the effect is a constant. “no self”
denotes that self-gravity is excluded from calculation. Equations to calculate some terms are shown in appendix A,
Because this two are messy, a plot with less lines is shown in appendix B. That includes what we now believe to be
“most correct”
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It’s been noted that the ambient medium has an non-negligible mass and pressure. The total mass of the ambient
medium is Mamb = 6.67 ∗ 10−9 ∗ (8 ∗ 1013)3 = 3.41 ∗ 1033g = 1.717M�, more then half of the mass of the RG and
secondary combined!
The total energy changes by 3.28 ∗ 1046erg (−12.1%). If we take into account the fact that the solfening radius is
reduced by a half during the simulation, the total energy change will be 3.44 ∗ 1046erg. (−12.7%)
To estimate the effect of ambient medium on the evolution, one of the method is to estimate the initial total energy
of the ambient and subtract that from the energy of the gas. Because in the first frame, the ambient medium is not
moving (v = 0 and Tamb = 0), we only need to consider potential energy and internal energy. In the first frame,
the density and pressure of the ambient material are both constants through out, therefore the internal energy of
the material is given by

Eint, amb =
3

2
PV =

3

2
∗ 105 ∗ (8 ∗ 1013)3 = 7.68 ∗ 1046erg (22)

The potential energy of the self-gravity of the material is

Uamb =

∫ H

L

∫ H

L

∫ H

L

∫ H

L

∫ H

L

∫ H

L

−G ρ2√
(x− x0)2 + (y − y0)2 + (z − z0)2

dxdydzdx0dy0dz0 (23)

where L = −4 ∗ 1013 and H = 4 ∗ 1013, the boundaries of the box.
This equation is too computational intensive to solve, therefore I believe we can consider the following.
The self-gravity potential will be less than a sphere that exactly fit in the box, and will be greater than a sphere
that can exactly contain the box. Then, the limits are simply

Ulim = −3

5

GM2

R
−→ Uupper = −1.17 ∗ 1046erg and Ulower = −6.74 ∗ 1045erg (24)

This value appears to be less significant than the internal energy.
And the potential energy between the ambient material and the cores are

Uamb, core =

∫ H

L

∫ H

L

∫ H

L

−G ρmc√
(x− xc)2 + (y − yc)2 + (z − zc)2

dxdydz (25)

And the values are ##### Uamb,core2 is crashing when I try to calculate it... So I calculate the value if the second
core is at the center#####

Uamb, core1 = −4.97375 ∗ 1045erg and Uamb, core2 = −1.31825 ∗ 1046erg (26)

Another term that we need to consider is the gravitational interaction between the ambient material and the actual
gas in the box. To calculate this potential, we need to integrate over our actual gas (which is no longer a perfect
sphere after the first frame) and integrate over the whole box. This calculation is again too computational intensive,
but because the gas is concentrated in the center of the box, we can approximate it to a point particle at the location
of its center of mass. With this approximation, the gravitational potential that we found is

Uamb,gas ≈
∫ H

L

∫ H

L

∫ H

L

−G ρmgas√
(x− xg)2 + (y − yg)2 + (z − zg)2

dxdydz = −2.1526 ∗ 1046erg (27)

Note that this approximation breaks down after the first few frames, but we use this value to generate the plot.
To estimate the effect of ambient material to the envelope evolution, we have to take into account that the gas
“wasted” some energy to push the ambient outward. There are two terms to consider: work acting against ambient
pressure and work acting against ambient gravity.
First consider work acting against pressure. Approximate the initial position of the gas are all around the center
region, assuming that the pressure doesn’t change during the simulation (As we checked, the pressure changes by
less than 2×) and assuming that the ambient medium has been pushed to a sphere with radius half the box width
(This is an overestimate of the distance), we have energy used equal to

Epush-bound = P0 ∗
∫ 4∗1013

0

4πr2dr = 1.34 ∗ 1046erg (28)
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In the simulation, the gas tends to be pushed to a sphere radius 3∗1013 cm from the center. In this case, the energy
dissipated is

Epush-3e13 = P0 ∗
∫ 3∗1013

0

4πr2dr = 0.565 ∗ 1046erg (29)

Now consider work against gravity. Assuming that the rest of the mass (the stars) are located at the center with a
constant mass, the gravitational potential to move a layer thick dr of ambient at the radius r is given by

Epush-gravdr = G
ρ4πr2dr

r
−Gρ4πr2dr

rfinal
= 4πGρ

(
r − r2

rfinal

)
dr (30)

Then, to move everything inside radius 3 ∗ 1013 cm to that radius, we need energy equal to

Epush-grav = 8.38596 ∗ 1011erg (31)

This is an estimate of the energy used. In practice the ambient is accelerated to a non-zero velocity, meaning the
gas has some kinetic energy. But unless the velocity is large (which is not likely), the energy will keep on this order
of magnitude and be negligible comparing to those in orders of magnitude 1046.
From the calculation, we can estimate that the total potential energy by the ambient gas is around −0.4 ∗ 1047 erg,
and that the total energy of the ambient is dominated by the internal energy. The range of total energy of ambient
gas is between 2.4 ∗ 1046erg and 3.2 ∗ 1046erg.
The final envelope total energy (excluding self-gravity) is −8 ∗ 1046 erg. If we add the work “wasted” by the gas,
the final envelope total energy will become −6.66 ∗ 1046 erg.

Figure 3: Left is the gradient of total energy and Etot env no self. Right is the estimated time for Etot env no self
to go to zero vs the number of test data points that we take from the end of Etotenvnoself

It appears, from the preceding figures, that the acceleration is majorly above zero, meaning energy is mainly
increasing. The figure to the right appears that the shorter we take, the faster it will be for the value to go to zero.
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5.2 Spacial dependence of energy

5.2.1 Normalized energy figures

The following figures shows the normalized energy function. The function used to normalize the function is

Nr =
Er

max(|KE + Eint|, |PEgas par|)
(32)

where Er is the total energy as a function of radius excluding the gas-self potential energy.

Figure 4: Initial energy distribution in x-y plane

0.5

Figure 5: Final energy distribution in x-y plane

Figure 6: Initial energy distribution in x-z plane

0.5

Figure 7: Final energy distribution in x-z plane
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Figure 8: Initial energy distribution in y-z plane

0.5

Figure 9: Initial energy distribution in x-y plane

The result gives us the sign of the gas and the difference between the positive energies and negative energies.
The actual values of energy is distributed widely, so this is the way for us to understand the spacial distribution.
In figure 5, we see that the clear spiral structure. There are actually material with escape velocity keep ejected
from the neighborhood of the cores, and they interact with the surrounding material losing some energy. Some
earlier figures show that there can be an “onion” ring structure suggesting that unbound and bound gas form layer
structure.
It is also worth noticing the initial ambient material is unbound.
I have plots for all frames in all three direction for normalized and original data. It would be informative to see
some of the evolution. Though putting 174 frames in this Latex file is impossible..
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5.3 Radial Energy distribution

Figure 10: contours showing the radial shells that are presented next

Figure 11: total energy distribution as a function of radius and time. The curves are cumulative: The outer radius
includes all in the smaller radius.
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Figure 12: components for total energy as a function of radius and time. upper left: kinetic, upper right: potential;
middle left: internal; middle right: gas and particle 1 potential; bottom left: gas and particle 2 potential.

These figures are radial distribution of energy for reduced resolution data set. Because the program is too compu-
tationally intensive, I only collected data from several frames where something interesting seems to be happening
according to mass radial distribution plot (see later). The data points are marked on the figure. The blue line is
the inner-most, and other lines move out respectively.

It appears that the energy is somewhat concentrated in the most central region. The potential energy and
kinetic energy doesn’t increase too much by moving outward a lot (10 lines). The ambient medium doesn’t seem
to have a lot of energy as the center do.
The most central region doesn’t seems to have too much energy, however, the regions near the center 2e13 to 3e13
seems to be where energy concentrates. This also agrees with radial pseudocolor plot presented earlier.
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Figure 13: Same figure as previous one but with self-gravity removed. The horizontal black dahsed line is the final
value of Etot env corrected no self in Ohlmann comparison figure. 2
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5.4 Mass

5.4.1 Mass evolution

In this subsection we examine the mass evolution of the system

Figure 14: Mass evolution, the velocity and acceleration are scalars. They are the absolute value of the velocity/ac-
celeration at that particular time

From the preceding figure, we can see that the total mass is relatively well-conserved. The initial mass is 4.66
M� and final mass is 4.73 M�. The mass change fraction is

Mf−Mi

Mi
= 1.38% . Counter-intuitively, the system is
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actually gaining mass rather than losing mass, which explains why the system is gaining energy.
The total change in mass is equal to 0.06426M� over 40 days, which would require a mass change rate 0.0016M�/
day on average, or 3.697 ∗ 1025g/s

5.4.2 Unbound Mass

Figure 15: Amount of unbounded mass as a function of time

From the figure, it appears that the amount of mass unbound is increasing and then level off. The final total
unbound mass is 1.96M� (59.37% of gas + medium) and the final unbound envelope (removing ambient) is 0.25M�
(15% of gas only). The maximum unbounded envelope is 0.35M�. The maximum seems to be reached when the
secondary orbit around the primary exactly once (frame 57, 58 or 59, see appendix)
It appears that from this figure not much mass in the end gets unbound. Probably because most energy was taken
away by some mass that was scattered at the beginning of the evolution. This would require further analysis on
the distribution of mass and cross check with the energy plots.
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5.4.3 Radial mass distribution

Figure 16: plot of mass inside a certain radius. The lines are cumulative so outer radius are further. The 10th line,
the light blue line in the middle marks the transition between radius differ by 1e12 and by 3e12

In this figure, it appears that mass is transferring from the central region to the more outer regions. It looks like
the mass was first concentrated inside radius 3 ∗ 1012cm, which is expected because it’s inside the RG. Later it
transported to a region between 8 ∗ 1012cm and 2.5 ∗ 1013cm. However, it is interesting to notice that the top-most
line is actually increasing. The top-most line denotes the ball exactly fit in the box. This increase meaning that
there are material in-flowing into this boundary, part of which maybe due to inflow from boundary. It is likely
that, if simulation were run longer, that the mass become concentrated around the middle region (8 ∗ 1012cm and
2.5 ∗ 1013cm).

Luke said that there are inflow at the middle of the boundaries and outflow at the corners. It maybe worth
to check these. It appears that this is true because the upper most curve here clearly changes more than the
previous total mass curve.
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5.5 Flux through boundary

5.5.1 Mass flux through boundary

To find the mass flux through the boundary, we use the following equation

Φm =

∫
ρmvmdA (33)

where ρm is the density of mass at the boundary, vm is the velocity of mass at the boundary and dA is the amount
of area that a certain amount of mass pass through.
It should be noted that we are using simulation, meaning our dA is the area of a side of the grid. The method to
perform this calculation is still developing, however it maybe logical to believe that the boundary grid is uniformally
distributed. This subsection will require further investigation on the validity of the data, but I believe so far all
logic sounds.
The process is used to find area of each mesh grid (dA)
Assuming that the grid are uniformally distributed so that each grid cell contribute to the total area for the same
amount, then we can use the total area over the amount of cells on that level to get the area for each cell.

Ae =
Atot

N
=

(8 ∗ 1013)2

262144
= 2.44 ∗ 1022cm2 (34)

And we multiply this to all values obtained from VISiT
I am not sure this process is actually necessary.

Figure 17: The mass flux through each edge in units g/s. Capital letters denote the plane, lower case letters and
the + or - denote the ’positive’ direction of velocity (into the box). i.e. if the flux is positive at +, it is coming into
the box, or if the flux is negative at -, it is also coming into the box

Note that in this figure three of the cures are negative. That is because the material is traveling in the negative
direction. However, because they are at the maximum end of axis, the material is actually coming into the box.
It appears from this figure that the amount of mass getting into the box is actually increasing. An approximation
for calculating all mass coming into the box is by assuming that for all time between two frames, the rate is the
same as the preceding frame. Then, the value would be ∆Mtot = 1.28 ∗ 1032g ≈ 0.064M�
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5.5.2 Energy flux through boundary

Figure 18: The energy flux through the boundaries. The notations are the same as the mass figure.

The energy plot looks nearly identical to the mass plot, meaning the mass getting into the box has similar energy
throughout the simulation.
The cumulative energy inflow is 1.99 ∗ 1045erg, which is less than the increase in total energy Is it possible for all
these entering mass have velocities directed to the center such that it inpedes the ejection more?
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6 Original data

6.1 Time dependence of energy (TO BE DONE)

6.2 Spacial dependence of energy (TO BE DONE)

6.2.1 Normalized energy figures (TO BE DONE)

6.3 Mass (TO BE DONE)

6.3.1 Mass evolution

Figure 19: The figure with data from the original data set.
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The mass evolution of the original data seems also relatively well. The system initial mass is 4.66M�, final mass is
4.73M�. This data is extremely similar to that of the reduced resolution. The deviation is less than 1.7 ∗ 10−6%
for initial mass and 0% (No deviation at all) for final mass.
The mass change is 0.064M�, which is 1.4% of the original mass. This data is again very similar to that in the
reduced resolution one.
The final velocity of the particle center of mass is 0.899km/s. And the final acceleration of the particle CM is
0.033km/s2

It is interesting to notice that the initial mass of the gas obtained from calculation is different from that obtained
from the python file. The deviation is about 0.018M�
The data here was double-checked.

6.3.2 Unbound Mass (TO BE DONE)

6.3.3 Radial mass distribution (TO BE DONE)

6.4 Flux through boundary

6.4.1 Mass flux through boundary

Figure 20: The figure is plotted with original data. The mass flux through each edge in units g/s. Capital letters
denote the plane, lower case letters and the + or - denote the ’positive’ direction of velocity (into the box). i.e. if
the flux is positive at +, it is coming into the box, or if the flux is negative at -, it is also coming into the box

This figure looks not that different from the reduced resolution one. However, it appears that less mass is flowing
into the boundary. The total mass change is ∆M = 1.28 ∗ 1032g = 0.064M� (Mass of the sun is more accurate),
about the same as the reduced one.
This data also mostly agrees with the total mass change data (Deviates by 0.03%).

6.4.2 Energy flux through boundary (TO BE DONE)
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7 Ideas

7.1 Roche Lobe Overflow

During binary star interaction, a phase that usually meet by people is the Roche Lobe Overflow. In this phase,
material from one star get transported onto the other.
The idea here is whether Roche Lobe Overflow phase can bring extra energy to the ejection of common envelope.
Most of the energy in this phase comes from the decay of orbital energy. (Assuming that such overflow doesn’t
drive fusion). Then we need to consider the energy released from the beginning of Roche Lobe Overflow to when
the star plunge in.
When two stars reach Roche Lobe overflow, according to Eggleton [3], the radius of the red giant r1 and the distance
between the star A is given by

r1

A
=

0.49 ∗ q 2
3

0.6 ∗ q 2
3 + ln

(
1 + q

1
3

) (35)

where q = m1

m2

Now, if we plug in the numbers from our simulation (Table 1), then we get

rroche = A = 7.73737 ∗ 1012cm = 111.248R� (36)

Consider the system evolves from this radius to the plunge in radius (rin = 49R�), by assuming that the secondary
reach “stable” orbit on each radius, we can estimate the energy by applying the Virial Theorem

Eorb,Roche = −GMrgM2

2rin
−
(
−GMrgM2

2rroche

)
= −4.16507 ∗ 1046erg (37)

If all these energy is transported into envelope, then the energy is about 2/3 of the energy required
A flaw of logic in this argument maybe there are mass transfer and mass lose in the process of the evolution.
I am not sure if the following is correct.. The overflow system can be a chaotic system that is hard to be modeled.
The transfer rate is approximated by Paczy nski, B., Sienkiewicz, (1972). The simulation in macleod’s paper has
a really different value than ours and it’s actually hard to tell how the system will behave if it finally reaches a
system like ours..
We also need to take into account that because there are mass lose, the remaining energy may not be as large as
we estimated. Some of the gas maybe ejected with high energies that takes away a lot of energy (need grounds for
this argument).
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8 Appendix

8.1 Appendix A: equation for figures

Ekin par tot = Ekin par1 + Ekin par2
Ekin tot = Ekin par2 + Ekin par1 + Ekin gas box
Epot tot = Epot gas par2 box + Epot gas par1 box + Epot gas box + Epot par
Etot env = Ekin gas box + Epot gas box + Eint gas box + Epot gas par1 box + Epot gas par2 box
Epar tot = Ekin par1 + Ekin par2 + Epot par + Epot gas par1 box + Epot gas par2 box
Epot tot no self = Epot gas par2 box + Epot gas par1 box + Epot par
Etot env no self = Ekin gas box + Eint gas box + Epot gas par1 box + Epot gas par2 box

8.2 Appendix B: A more clean-up plot

Figure 21: A more cleaned up plot of figure 2
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8.3 Appendix C: supplementary: some other figures

Figure 22: Density, frame 0, cut from z-axis Figure 23: Density, frame last, cut from z-axis

Figure 24: Pressure, frame 0, cut from z-axis Figure 25: Pressure, frame last, cut from z-axis
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8.4 Appendix D: Energy and Mass distribution frame 57-59
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