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ABSTRACT
An electron-positron equation of state based on table interpolation of the Helmholtz free energy is

developed and analyzed. The interpolation scheme guarantees perfect thermodynamic consistency, inde-
pendent of the interpolating function. The choice of a biquintic Hermite polynomial as the interpolating
function results in accurately reproducing the underlying Helmholtz free energy data in the table, and
yields derivatives of the pressure, speciÐc entropy, and speciÐc internal energy which are smooth and
continuous. The execution speedÈevaluated across several di†erent machine architectures, compiler
options, and modes of operationÈsuggests that the Helmholtz equation of state routine is faster than
any of the Ðve equation of state routines surveyed by Timmes & Arnett. When an optimal balance of
accuracy, thermodynamic consistency, and speed is desirable then the tabular Helmholtz equation of
state is an excellent choice, particularly for multidimensional models of stellar phenomena.
Subject headings : equation of state È hydrodynamics È methods : numerical È stars : general

1. INTRODUCTION

Models of stellar events usually require the relationship between various thermodynamic properties over a large span of
temperatures, densities, and compositions. Stellar equation of state (henceforth EOS) routines are used for the thermodyna-
mic conditions found in models of stellar evolution, supernovae, novae, and X-ray bursts, so the EOS must be accurate in
regions where the electrons and positrons have a speed arbitrarily close to the causal limits and an arbitrary degree of
degeneracy. With over 109 calls to the EOS being common in two- and three-dimensional hydrodynamic models of stellar
phenomena, it is very desirable to have an electron-positron EOS that is as efficient as possible and yet accurately represents
the relevant physics.

Direct evaluation of the electron-positron physics in the EOS is usually accurate enough and thermodynamically consis-
tent, but it is often overly time consuming within the context of a two- or three-dimensional model. Tabular equations of state
for the electron-positron plasma are usually efficient enough for multidimensional models, but bring about their own set of
difficulties with regard to accuracy and consistency. These difficulties include the need for accurate interpolations, the need for
a temperature-density grid which is dense enough to provide sufficient resolution of the thermodynamic variables, and the
need for the interpolated values to be thermodynamically consistent with each other (i.e., satisfy the Maxwell relations). In
many circumstances the number of points in the temperature-density grid can always be made large enough to keep the
accuracy and level of thermodynamic inconsistency at an acceptable level, although in some cases the memory or cache
requirements can begin to deteriorate the efficiency of using a tabular EOS. It is our intent to minimize the amount of table
tuning.

The purpose of this paper is to present a method of evaluating electron-positron equation of state tables which maintains
Ðdelity to the underlying thermodynamic data with a modest temperature-density grid, and which guarantees thermodynamic
consistency of the interpolated values.

In ° 2 we discuss the mechanics of the method. The accuracy, thermodynamic consistency, and speed of the resulting EOS
routines are analyzed in ° 3. A summary of our Ðndings is given in ° 4, and in the Appendix we list a FORTRAN routine which
implements the method.

2. IMPLEMENTATION

2.1. Assuring T hermodynamic Consistency
Let isotope i have protons and nucleons (protons ] neutrons). Let the aggregate total of isotope i have a numberZ

i
A

idensity (in cm~3) in material with a temperature T (in K) and a mass density o (in g cm~3). DeÐne the dimensionless massn
ifraction of isotope i as where is AvogadroÏs number. The mean number of nucleons per isotope isX
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/(oNA), NAdeÐned as the mean charge per isotope is deÐned as and the number of electrons perA\ (; X

i
/A

i
)~1, Z\A ; Z

i
X

i
/A

i
,

baryon is deÐned as Under these conditions, let the material have a scalar pressure P (in ergs cm~3), a speciÐcY
e
\ Z/A.

internal energy E (in ergs g~1), and a speciÐc entropy S (in ergs g~1 K~1).
The Ðrst law of thermodynamics

dE\ T dS ] P
o2 do (1)
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is an exact di†erential, which requires that the thermodynamic relations
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be satisÐed. An equation of state is thermodynamically consistent if all three of these identities are true. Thermodynamic
inconsistency may manifest itself in the unphysical buildup (or decay) of the entropy (or temperature) during numerical
simulations of what should be an adiabatic Ñow. Models of events which are sensitive to the entropy (e.g., core-collapse
supernovae) may su†er inaccuracies if thermodynamic consistency is signiÐcantly violated over a sufficient number of time
steps (Swesty 1996).

When the temperature and density are the natural thermodynamic variables to use, the appropriate thermodynamic
potential is the Helmholtz free energy

F\ E[ T S, dF\ [SdT ] P
o2 do . (5)

With the pressure deÐned as

P\ o2 LF
Lo
K
T

, (6)

the Ðrst of the Maxwell relations (eq. 2) is automatically satisÐed, as substitution of equation (5) into equation (6) demon-
strates. With the entropy deÐned as

S \ [ LF
LT
K
o

, (7)

the second of the Maxwell relations (eq. 3) is automatically satisÐed, as substitution of equation (5) into equation (7)
demonstrates. The requirement that the mixed partial derivatives commute

L2F
LT Lo

\ L2F
LoLT

(8)

ensures that the third of the thermodynamic identity (eq. 4) is satisÐed, as substitution of equation (5) into equation (8) shows.
Consider any interpolating function for the Helmholtz free energy F(o, T ) which satisÐes equation (8). Thermodynamic

consistency is guaranteed as long as equation (6) is used Ðrst to evaluate the pressure, equation (7) is used second to evaluate
the entropy, and Ðnally equation (5) is used to evaluate the internal energy (Swesty 1996). In fact, this procedure is almost too
robust ! The interpolated values may be horribly inaccurate but they will be thermodynamically consistent. Having presented
this method that guarantees thermodynamic consistency, the next task to consider is the construction of an interpolating
function that retains Ðdelity to the underlying data.

2.2. Construction of the Biquintic Polynomials
Given any interpolating function for the Helmholtz free energy, the pressure, entropy, and internal energy are given by

derivatives of the interpolating function. The derivatives of the pressure, entropy, and internal energy, are in turn given by the
second derivatives of the interpolating function. One also wants the derivatives of the pressure, entropy, and internal energy
to be continuous across the table grid points, not for any thermodynamic reasons, but for convergence of the Newton-
Raphson iterative schemes that are invariably present in explicit or implicit time integrations of the Ñuid equations. From
these general considerations, the minimum order of an interpolating polynomial that will suffice is a quartic. For the reasons
given below, the minimum order of the interpolating polynomial is actually a quintic. With this choice of an interpolating
function, the Helmholtz free energy is given by a quintic polynomial in both the density and temperature table directions. The
pressure, entropy, and internal energy are given by a quartic polynomials, and the derivatives of the pressure, entropy, and
internal energy are given by cubic polynomials.

Suppose one wants to deÐne a function on the interval that has the following properties :[x
i
, x

i`1]

f (x
i
)\ C1, f (x

i`1) \ C2 ,

f @(x
i
)\ C3, f @(x

i`1) \ C4 , (9)

where the are arbitrary constants. The lowest order polynomial that could satisfy these four conditions is a cubic :C
i

f (x)\ A] Bx] Cx2] Dx3 . (10)
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The conditions of equation (9) determine the coefficients A, B, C, and D in terms of the The two polynomials multiplyingC
i
.

the resultant are the cubic Hermite basis functions (e.g., Davis 1963, p. 37) :C
i

t0(z) \ 2z3 [ 3z2] 1 ,

t1(z) \ z3 [ 2z2] z , (11)

where

z\ x [ x
i

x
i`1 [ x

i
, (12)

and the interpolating cubic Hermite polynomial is
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To use the cubic Hermite interpolant one must tabulate the function f (x) and its Ðrst derivative df/dx at the grid points. In
return for this investment, the values of the function and its Ðrst derivative are reproduced exactly at the grid points. In
addition, the values of the function and the Ðrst derivative change continuously as the interpolating point moves from one
grid cell to the next. Note the derivative of cubic Hermite polynomial is given by the derivative of the basis functions in
equation (11).

The cubic Hermite basis functions are extended from one dimension to two dimensions by interpolating each of the basis
functions in the second dimension. An example of the resulting bicubic interpolation is given by Press et al. (1996). Unfor-
tunately, bicubic interpolation is insufficient for a Helmholtz free energy based equation of state because the derivatives of the
pressure, entropy, and internal energy would be given by piecewise linear functions, which would be discontinuous as the
interpolating point moves from one grid cell to the next. These discontinuities would cause nonconvergence in the root-
Ðnding schemes that are invariably present in stellar hydrodynamic programs. To gain continuity of the pressure, entropy,
and internal energy derivatives one must go to the next order Hermite polynomial.

Imposing conditions on the second derivative of a function on the interval [x
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and applying the same techniques as above, yields the three quintic Hermite basis functions :

t0(z) \ [6z5] 15z4[ 10z3] 1 ,

t1(z) \ [3z5] 8z4[ 6z3] z ,

t2(z) \ 12([z5] 3z4[ 3z3] z2) . (15)

In this case the interpolating quintic Hermite polynomial (Davis 1963, page 37) is
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The one-dimensional quintic polynomial is extended to two dimensions by interpolating each of the basis functions in the
second dimension. The resulting biquintic interpolation function (Swesty 1996) for the density and temperature rectangle
bounded by and is given byo

i
¹ o \o

i`1 T
i
¹ T \ T

i`1
H5(o, T )\ F

i,j t0(x)t0(y)] F
i`1,jt0(1[ x)t0(y)] F

i,j`1 t0(x)t0(1[ y) ] F
i`1,j`1t0(1[ x)t0(1[ y)

] LF
LT
K
i,j

(T
j`1[ T

j
)t1(x)t0(y)[ LF

LT
K
i`1,j

(T
j`1[ T

j
)t1(1[ x)t0(y) ] LF

LT
K
i,j`1

(T
j`1[ T

j
)t1(x)t0(1[ y)

[ LF
LT
K
i`1,j`1

(T
j`1[ T

j
)t1(1[ x)t0(1[ y)] L2F

LT 2
K
i,j

(T
j`1 [ T

j
)2t2(x)t0(y) ] L2F

LT 2
K
i`1,j

(T
j`1[ T

j
)2t2(1[ x)t0(y)

] L2F
LT 2

K
i,j`1

(T
j`1[ T

j
)2t2(x)t0(1[ y)] L2F

LT 2
K
i`1,j`1

(T
j`1 [ T

j
)2t2(1[ x)t0(1[ y) ] LF

Lo
K
i,j

(o
i`1 [ o

i
)t0(x)t1(y)

] LF
Lo
K
i`1,j

(o
i`1 [ o

i
)t0(1[ x)t1(y)[ LF

Lo
K
i,j`1

(o
i`1 [ o

i
)t0(x)t1(1[ y) [ LF

Lo
K
i`1,j`1

(o
i`1 [ o

i
)t0(1[ x)t1(1 [ y)

] L2F
Lo2

K
i,j

(o
i`1 [ o

i
)2t0(x)t2(y)] L2F

Lo2
K
i`1,j

(o
i`1 [ o

i
)2t0(1[ x)t2(y) ] L2F

Lo2
K
i,j`1

(o
i`1 [ o

i
)2t0(x)t2(1[ y)



504 TIMMES & SWESTY Vol. 126

] L2F
Lo2

K
i`1,j`1

(o
i`1[ o

i
)2t0(1[ x)t2(1[ y)] L2F

LT Lo2
K
i,j

(T
j`1 [ T

j
)(o

i`1[ o
i
)t1(x)t1(y)

[ L2F
LT Lo

K
i`1,j

(T
j`1[ T

j
)(o

i`1 [ o
i
)t1(1[ x)t1(y)[ L2F

LT Lo2
K
i,j`1

(T
j`1[ T

j
)(o

i`1 [ o
i
)t1(x)t1(1[ y)

] L2F
LT Lo

K
i`1,j`1

(T
j`1[ T

j
)(o

i`1 [ o
i
)t1(1[ x)t1(1 [ y) ] L3F

LT 2Lo
K
i,j

(T
j`1[ T

j
)2(o

i`1 [ o
i
)t2(x)t1(y)

] L3F
LT 2Lo

K
i`1,j

(T
j`1[ T

j
)2(o

i`1 [ o
i
)t2(1[ x)t1(y) [ L3F

LT 2Lo
K
i,j`1

(T
j`1 [ T

j
)2(o

i`1[ o
i
)t2(x)t1(1[ y)

[ L3F
LT 2Lo

K
i`1,j`1

(T
j`1[ T

j
)2(o

i`1 [ o
i
)t2(1[ x)t1(1[ y) ] L3F

Lo2LT
K
i,j

(T
j`1[ T

j
)(o

i`1 [ o
i
)2t1(x)t2(y)

[ L3F
Lo2LT

K
i`1,j

(T
j`1[ T

j
)2(o

i`1 [ o
i
)2t1(1[ x)t2(y) ] L3F

Lo2LT
K
i,j`1

(T
j`1 [ T

j
)(o

i`1[ o
i
)2t1(x)t2(1[ y)

[ L3F
Lo2LT

K
i`1,j`1

(T
j`1[ T

j
)(o

i`1 [ o
i
)2t1(1[ x)t2(1[ y) ] L4F

LT 2Lo2
K
i,j

(T
j`1[ T

j
)2(o

i`1 [ o
i
)2t2(x)t2(y)

] L4F
LT 2Lo2

K
i`1,j

(T
j`1[ T

j
)2(o

i`1 [ o
i
)2t2(1[ x)t2(y) ] L4F

LT 2Lo2
K
i,j`1

(T
j`1[ T

j
)2(o

i`1 [ o
i
)2t2(x)t2(1[ y)

] L4F
LT 2Lo2

K
i`1,j`1

(T
j`1[ T

j
)2(o

i`1[ o
i
)2t2(1[ x)t2(1[ y) , (17)

where in analogy with equation (12),

x \ o [ o
i

o
i`1[ o

i
, y \ T [ T

j
T
i`1 [ T

i
. (18)

Despite the rather ungainly appearance of the 36 terms in equation (17), the repetitive patterns in the structure of the
equation allow for a concise evaluation (see the Appendix).

To use the biquintic Hermite interpolant for a Helmholtz free energy based equation of state, one must tabulate the
Helmholtz free energy F and the eight partial derivatives LF/LT , LF/Lo, L2F/LT 2, L2F/Lo2, L2F/LT Lo, L3F/LT 2Lo, L3F/
Lo2LT , L4F/LT 2Lo2, as a function of density and temperature. In return for this nontrivial investment, the values of the
function, Ðrst partial derivatives, and second partial derivatives are reproduced exactly at the grid points. The values of the
function, and its Ðrst and second partial derivatives, change continuously as the interpolating point moves from one grid cell
to the next. With equation (17) as the interpolating function, the Helmholtz free energy is given by a biquintic polynomial. The
pressure, entropy, and internal energy are given by a biquartic polynomials, and the derivatives of the pressure, entropy, and
internal energy are given by bicubic polynomials. Note the partial derivatives of biquintic interpolant are determined by the
derivatives of the three basis functions in equation (15).

Fortunately, Ðve of the eight partial derivatives needed to use the biquintic interpolant can usually be formed from the EOS
routine which is used to generate the equations :
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The third partial derivatives (L3F/LT 2Lo, L3F/Lo2LT ) and the fourth partial derivative (L4F/Lo2LT 2) are rarely available
directly from the EOS routine. However, these third and fourth partial derivatives may be obtained from techniques which
produce accurate numerical derivatives. For example, we have obtained good quality third and fourth partial derivatives with
the routine DFRIDR from Press et al. (1996). One simply replaces the lines in DFRIDR which implement the Ðrst derivative
Ðnite di†erence approximation with the appropriate third and fourth derivative Ðnite di†erence approximations. Note that
the third and fourth order partial derivatives are not necessary to ensure that the interpolant and its partial derivatives obtain
the proper values at the grid points, or to insure smoothness across cell boundaries. What the third and fourth partial
derivatives do ensure is that the values of L2F/LT 2 and L2F/Lo2 (both of which contain valuable thermodynamic data) remain
well behaved in the middle of a cell. Omission of the three ““ twist ÏÏ terms can allow the second partial derivatives of the
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interpolant to exhibit undesirable oscillations as one moves through the center of a cell. An example where omission of the
third and fourth derivatives can cause errant behavior is at temperatures where pair-production starts to dominate the
thermodynamic state.

Once a table of the Helmholtz free energy and eight of its partial derivatives has been constructed, then use of equations
(5È8) and equation (17) supplies the thermodynamically consistent interpolated values :
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Now in possession of a method which guarantees thermodynamic consistency and a suitable interpolating polynomial, the
next task is to construct an accurate electron-positron EOS table. Before doing so, it behooves us to point out that the
principle of maximum entropy, d2S \ 0, implies an inequality for the intrinsic stability of matter against temperature
variations
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o
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v
º 0 , (21)

and an inequality for thermodynamic stability against density Ñuctuations (e.g., Reif 1965, chap. 8)
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The interpolation scheme presented above does not guarantee that these two stability inequalities are satisÐed. It would, of
course, be desirable to formulate an interpolation scheme which did ensure thermodynamic stability, as well as ensure
thermodynamic consistency. Such an interpolation scheme would appear to require more coefficients than the biquintic
scheme described above since all of the coefficients in the biquintic scheme are uniquely determined by imposing smoothness
and continuity of the interpolating function, its Ðrst partial derivatives, and its second partial derivatives (eq. [17]). Additional
constraints appears to require requires additional coefficients. It is presently unclear (to the authors !) how the additional
coefficients should be chosen in order to guarantee that certain second partial derivatives of the interpolant (eqs. [21]È[22])
are positive-deÐnite, a subject of active research in shape-preserving interpolation theory (e.g., 1995 ; Costantini &Spa� th
Manni 1996). For these reasons, the interpolation scheme presented above restricts attention to maintaining accuracy to the
underlying data at the grid points, continuity of the thermodynamic variables, and thermodynamic consistency. Thus, it
remains necessary with the present scheme to numerically verify that the stability inequalities of equations (21)È(22) are
satisÐed. Extensive checks of the tabular electron-positron EOS developed in this paper failed to Ðnd a single temperature,
density, and composition input point where the thermodynamic stability inequalities were violated.

2.3. Making the Electron-Positron Equation of State T able
Timmes & Arnett (1999) compared the accuracy, thermodynamic consistency, and execution speed of Ðve di†erent EOS

routines that are used in modeling stellar events. The EOS routines examined in their survey encompass one that is exact (for
the assumptions imposed) in IEEE 64-bit arithmetic and served as the reference point for the comparisons (the Timmes EOS).
The other four EOS routines analyzed were one written by Iben which was designed primarily for evolving models of
intermediate- and low-mass stars (Iben, Fujimoto, & MacDonald 1992) ; one composed by Weaver, Zimmerman, & Woosley
(1978) which aims chieÑy for evolving models of massive stars ; one summarized by Nadyozhin (1974) and explained in detail
by Blinnikov et al. (1996, 1998) ; and one developed by Arnett (1996). The analysis performed in the Timmes & Arnett (1999)
survey permits a complete assessment of these Ðve equation of state routines.

The electron-positron Helmholtz free energy table is constructed with the Timmes EOS, which was designed for maximum
accuracy and thermodynamic consistency at the expense of speed. Evaluation of the requisite Fermi-Dirac integrals, along
with their partial derivatives, are calculated to at least 18 signiÐcant Ðgures with the efficient quadrature schemes of Aparicio
(1998). That is, the Fermi-Dirac integrals and their derivatives are exact in IEEE 64 bit arithmetic (16 signiÐcant Ðgures).
Newton-Raphson iteration is used to obtain the chemical potential to at least 15 signiÐcant Ðgures. All the partial derivatives
of the pressure, entropy, and internal energy are formed analytically, and the 1986 recommended values of the fundamental
physical constants (Cohen & Taylor 1987) are used to their published precision.

The table generated from the Timmes EOS stores the electron-positron Helmholtz free energy and the requisite eight
partial derivatives to 16 signiÐcant Ðgures. The limits of the table were chosen to be 10~6\ o \ 1011 g cm~3 and
104\ T \ 1011 K. This range of 17 orders of magnitude in density and 7 orders of magnitude in temperature is large enough
to alleviate concerns about exceeding the limits of table with canonical models of stellar phenomena.

It is vital to note that the Helmholtz free energy table is constructed only for the electron-positron plasma, is two-
dimensional F(o, T ), and is made with (pure hydrogen). One reason for not including contributions from photonsA\Z\ 1
and ions in the table is that these components of the EOS are very simple (assumed in this paper to be blackbody radiation
and ideal gas, respectively) and one does not need fancy table look-up schemes to evaluate simple analytical functions. A more
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important reason for only constructing an electron-positron EOS table with is that the two-dimensional table is validY
e
\ 1

for any composition. Separate planes for each are not necessary (or desirable) since simple multiplication or division byY
e

Y
ein the appropriate places gives the desired composition scaling (see Appendix). If photons and ions were included in the table,

then this valuable composition independence would be lost, and three-dimensional tables would be necessary. The EOS
routine which implements table look-up of the electron-positron contributions, along with the analytic radiation and ion
contributions, is termed the Helmholtz EOS.

Three di†erent density-temperature grids were considered in order to assess the accuracy of the biquintic polynomial as a
function of the table size. The ““ nominal grid ÏÏ consists of 10 points per decade in both the density and temperature. For the
density and temperature range under consideration, this means 171 density grid points and 71 temperature grid points. Since
each grid point stores nine quantities, the nominal grid has a memory footprint of 0.87 Mbyte in IEEE 488 double precision
arithmetic. The ““ 1/4 nominal grid ÏÏ consists of 5 points per decade in both the density and temperature directions. This grid
has 86 density points, 36 temperature points, and a memory footprint of 0.22 Mbyte in IEEE 488 64 bit arithmetic. The ““ 4
times nominal grid ÏÏ consists of 20 points per decade in both the density and temperature directions. This grid thus has 341
density grid points, 141 temperature grid points, and a memory footprint of 3.4 Mbyte in 64-bit arithmetic.

All the necessary pieces are now in place ; a method which assures thermodynamic consistency, a suitable interpolating
polynomial, and a electron-positron EOS table with very precise entries. How accurate, how thermodynamically consistent,
and how fast the Helmholtz EOS executes is evaluated in the next section.

3. ACCURACY, CONSISTENCY, AND SPEED OF THE HELMHOLTZ EOS

The pressure relative to the (exact) Timmes EOS is shown in Figure 1. The upper panel is for a temperature of 108 K, the
middle panel for 109 K, and the lower panel for 1010 K. The y-axis in each panel gives the absolute value of the deviation from
the correct answer, while the x-axis gives the mass density. Red curves are for the nominal grid, blue curves for the 1/4
nominal grid, and green curves are for 4 times nominal grid. The error in the pressure made by the 1/4 nominal grid (blue
curves) is typically about 1% or less, the error committed by using the nominal grid is typically about 1 part in 105, while using
the 4 ] nominal grid produces errors of about 1 part in 106. Note that the distribution of the errors is relatively Ñat ; there are
no regions where the error is a pronounced maximum or a minimum. All three curves decrease at the smaller densities in the
upper panel because ions begin to dominate contributions to the total pressure, and the ion thermodynamics is identical in the
Timmes and Helmholtz EOS routines.

The speciÐc internal energy relative to the Timmes EOS, which was used to create the electron-positron table, is shown in
Figure 2. The format of the plot is the same as in Figure 1. In general, the error in the speciÐc internal energy is about 1È2

FIG. 1.ÈAbsolute value of the relative di†erence from the exact Timmes EOS for the scalar pressure. T op : 108 K; middle : 109 K; bottom : 1010 K. The
y-axis in each panel gives the modulus of the relative di†erence from the correct answer, while the x-axis gives the mass density. Red curves are for the
nominal grid, blue curves for the 1/4 nominal grid, and green curves are for 4 times nominal grid case.
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FIG. 2.ÈAbsolute value of the relative di†erence from the Timmes EOS for the speciÐc internal energy. The format is the same as in Fig. 1. Error in the
speciÐc internal energy are about 1È2 orders of magnitude smaller than the corresponding error in the pressure. The red (nominal grid) and green (4 times
nominal grid) curves go below the scale of the y-axis in the upper panel because contributions from ions dominate the total internal energy. The blue curve,
however remains on the upper panel plot because the errors in the internal energy made by using the 1/4 nominal grid are relatively large. The structure of the
interpolating biquintic polynomial is clearly visible for the 1/4 nominal grid case.

orders of magnitude smaller than the corresponding error in the pressure. Like the distribution of the pressure errors, the
relative error distribution the speciÐc internal energy is relatively Ñat. There are, however, some regions where the relative
error becomes smaller or slightly larger, such as the middle panel in Figure 2 for densities larger than about 103 g cm~3, or the
lower panel in densities larger than about 109 g cm~3. The changes in the magnitude of the relative error are due to how well
the biquintic interpolant follows the Helmholtz free energy surface, particularly as the material traverses regions where one
component is decreasing (e.g., the positron contributions) and one component is increasing (e.g., electron degeneracy or
radiation). The red (nominal grid) and green (4 times nominal grid) curves go below the scale of the y-axis in the upper panel
because contributions from ions dominate the total internal energy. The blue curve, however, remains on the upper panel plot
because the errors in the internal energy made by using the 1/4 nominal grid are relatively large. The structure of the
interpolating biquintic polynomial is clearly visible for the 1/4 nominal grid case (blue curves).

The speciÐc entropy relative to the Timmes EOS is shown in Figure 3, and the layout of the Ðgure is the same as in Figure 1.
Typical errors in the speciÐc entropy for the three di†erent density-temperature grids are similar to those of the typical errors
in the speciÐc internal energy and pressure, so most of analysis of Figures 1È2 applies to Figure 3 as well.

The errors made in the partial derivative of the pressure with temperature, the partial derivative of the speciÐc internal
energy with temperature, and the speciÐc entropy with density are shown in Figures 4È6, respectively. The errors incurred
when using the 4 times nominal grid are the smallest, as expected, and the error associated when the 1/4 nominal grid is used
are the largest. What is more remarkable is that, in general, the derivative quantities are as precise as the integrated quantities ;
there is no general increase in the size of the errors even though these quantities are based on the second partial derivatives of
the Helmholtz free energy. The conditions of equation (14) which were imposed on the interpolating polynomial are the
primary reason for this behavior.

The locations of the sharp minima in Figures 1È6 correspond to points which happen to be near zeros of the di†erence from
the exact EOS. Thus, the locations of the minima (there would be more of them), and the amplitudes of minima (they would be
deeper) depend on the step size used in making the plots (not the step size used in constructing the table). It is the envelope of
the maximum error curves that limit the accuracy, since the accuracy is perfect at the grid points. How the error changes
between points of maximum error, which is almost always at half-grid points, indicates the distribution of the errors.

Figures 7È9 show the deviation made by the Timmes EOS and the Helmholtz EOS in satisfying the three thermodynamic
identities of equations 2È4. The smaller the deviation, with zero being the perfect case, the closer the equation of state comes
to satisfying this thermodynamic consistency relation. As asserted in ° 2.1, the Helmholtz EOS satisÐes thermodynamic
consistency to the limiting precision of IEEE 488 64 bit arithmetic over the entire temperature-density plane under consider-



FIG. 3.ÈModulus of the relative di†erence from the Timmes EOS for the speciÐc entropy. The format is the same as in Fig. 1, and much of the analysis of
Figs. 1 and 2 apply to the speciÐc entropy.

FIG. 4.ÈModulus of the relative di†erence from the Timmes EOS for the derivative of the pressure with respect to the temperature
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FIG. 5.ÈAbsolute value of the relative di†erence from the Timmes EOS for the derivative of the speciÐc internal energy with respect to the temperature.

FIG. 6.ÈAbsolute value of the relative di†erence from the Timmes EOS for the derivative of the speciÐc entropy with respect to the density
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FIG. 7.ÈRelative di†erence of the thermodynamic relation for the Timmes EOS and the Helmholtz EOS. The smaller the deviation,LE/LT oo \T LS/LT oowith zero deviation being the perfect case, the closer the equation of state comes to satisfying thermodynamic consistency.

FIG. 8.ÈRelative di†erence of the thermodynamic relation for the Timmes EOS and the Helmholtz EOSP\ o2LE/Lo o
T

] T LP/LT oo
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FIG. 9.ÈRelative di†erence of the thermodynamic relation for the Timmes EOS and the Helmholtz EOS[ LS/Lo o
T

\ 1/o2LP/LT oo

ation. The consistency of the Timmes EOS is quite good, but not perfect at the largest densities, because of delicate
cancellations which occur in very degenerate material.

The speed of the Helmholtz EOS was evaluated in the same manner as the Ðve EOS routines analyzed by Timmes & Arnett
(1999). BrieÑy, the Helmholtz EOS was called 108 times in ordered, random, and constant entropy sweeps. An ordered sweep
loops through 104 temperature points and 104 density points, both starting from the smallest value and Ðnishing on the
largest value in evenly spaced logarithmic steps. This type of sweep uniformly samples the entire temperature-density region
under consideration. A random sweep chooses 108 arbitrary temperature and density points that are uniformly distributed.
This type of sweep minimizes any speed advantage the Helmholtz EOS might gain in having the next point to be evaluated
also be a nearby (in cache) point. An entropy sweep loops through 104 temperature and 104 density points, chosen in such a
way that the speciÐc entropy remains constant. This type of sweep mimics a stellar evolution calculation since most of a starÏs
life is spent evolving at roughly constant entropy. The total CPU time spent executing each type of sweep was divided by the
108 calls to obtain the number of CPU seconds per call.

The Helmholtz EOS timing tests were run on Ðve di†erent computers ; three Silicon Graphics workstations, one Sun
workstation, and one LINUX PC. Each of the computers had a di†erent CPU clock speed (195È450 MHz), bus clock speed
(30È400 Mbyte s~1), main memory size (64È2000 Mbyte), and cache memory size (0.032È4 Mbyte). The Helmholtz EOS
routine was compiled and executed under FORTRAN 77 and FORTRAN 90. When possible, the compilation was performed
with one of four di†erent compiler option sets, from a set that requested no code optimization to a set that requested routines
to be in-lined, do loops to be unrolled, and aggressive code optimization. Searches through the Helmholtz free energy table

TABLE 1

RELATIVE TIMINGS IN SERIAL MODEa

TYPE OF TEMPERATURE AND DENSITY SWEEP

EOS Ordered Random Entropy

Timmes . . . . . . . . . 106 106 106
Helmholtz . . . . . . 0.8 0.9 0.8
Arnett . . . . . . . . . . 1.0 1.1 1.1

a CPU time per call for each EOS operating in serial mode on the
nominal grid. All values have been normalized to the Arnett EOS for
ordered sweeps in serial mode (see Timmes & Arnett 1999 for a dis-
cussion of the tabular Arnett EOS). The table entries are generally
independent of the machine architecture and compiler options used.
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TABLE 2

RELATIVE TIMINGS IN PIPELINE MODEa

TYPE OF TEMPERATURE AND DENSITY SWEEP

EOS Ordered Random Entropy

Timmes . . . . . . . . . 106 106 106
Helmholtz . . . . . . 0.2 0.3 0.3
Arnett . . . . . . . . . . 0.4 0.5 0.5

a CPU time per call for each EOS operating in pipeline mode, with a
pipe size of 104, on the nominal grid. All values have been normalized to
the Arnett EOS for ordered sweeps in serial mode (see Timmes & Arnett
1999 for a discussion of the tabular Arnett EOS). The table entries are
generally independent of the machine architecture and compiler options
used.

are avoided by computing the table indices from the values of any given (T , pair) (i.e., the table is hashed). All divisionsY
e
o

(which are computationally expensive) used in evaluating the table interpolants were removed, as these divisions can be
computed once and then stored. The absolute speed of the Helmholtz EOS routine depends, obviously, on the machine
architecture and compiler options employed. These dependences can be minimized, and meaningful comparisons made, by
comparing the relative speed of the Helmholtz EOS routine. Thus, the timing results shown in Tables 1 and 2 are normalized
to the Arnett EOS, which was the normalization choice in the Timmes & Arnett survey. Hence, the results of the present paper
may be directly compared to the results in the Timmes & Arnett survey. Like the Helmholtz EOS, the Arnett EOS also
employs a table look-up scheme for the electron-positron plasma. Timmes & Arnett give a full description of the Arnett EOS.

Table 1 shows the relative timing results when the Helmholtz EOS operates in serial mode on the nominal grid, with serial
mode being deÐned as the EOS routine operating on a single temperature, density, and composition point. A separate call is
required for each distinct input. Table 2 shows the relative timing results when the Helmholtz EOS operates in pipeline mode
on the nominal grid, with pipeline mode being deÐned as the EOS routine operating on entire temperature, density and
composition arrays. Pipeline mode rewards routines that made efficient use of the cache memory. Note, that the values in
Tables 1 and 2 have been normalized to the Arnett EOS for ordered sweeps in serial mode, so that any advantage from
operating in pipeline mode is explicit.

Tables 1 and 2 indicate that the execution speed of the Helmholtz EOS and the Arnett EOS routines increase by a factors of
2È5 when operated in pipeline mode rather than serial mode, because use of data cache memory is more efficient. This result is
dependent on the size of arrays being operated on in pipeline mode. In general, the larger the array sizes, the greater the
pipeline mode speed up. The results in Table 2 are for an array size of 104 and the nominal grid. These two EOS routines
executed ordered sweeps about 30% faster than random sweeps, and about 10% faster than entropy sweeps. The chief reason
for this behavior is that information for neighboring points is located next to each other in physical memory. Since ordered
sweeps calculated the EOS for neighboring points and random sweeps calculate the EOS for widely scattered points, the
ordered sweep is more likely than the random sweep to access data already loaded into the processor cache rather than
having to access this data from the slower main memory. This reduction in the time required to access information from
memory translates into a faster overall execution speed. Tables 1 and 2 show that the execution speed of the Timmes EOS is
about the same in serial and pipeline modes for all sweep types. The reason for this behavior is that the Timmes EOS performs
a root-Ðnd for the chemical potential in-line, which consumes the majority of the CPU time for any given temperature and
density input point.

Tables 1 and 2 suggest that the Helmholtz EOS is about 10%È20% faster than the Arnett EOS, and it is worth repeating
that both of these EOS routines use table lookup schemes to evaluate the electron-positron thermodynamics. The Timmes
EOS, not surprisingly, is the much slower than the Helmholtz EOS routine or the Arnett EOS routine since it was designed to
forsake any speed in favor of maximum accuracy.

Overall, Figures 1È9 show that the Helmholtz EOS routine achieves good accuracy with the nominal temperature-density
grid, and, by design, achieves perfect thermodynamic consistency. Compared to the Ðve EOS routines surveyed by Timmes &
Arnett (1999), the Helmholtz EOS is more accurate than all but one of the EOS routines, is more thermodynamically
consistent than any of the EOS routines analyzed (in some cases by an average of 8 orders of magnitude more consistent), and
is faster than any of the EOS routines tested.

4. SUMMARY

An electron-positron equation of state that is based on table interpolation of the Helmholtz free energy has been developed
and analyzed. The interpolation scheme guarantees perfect thermodynamic consistency (Figs. 7È9), independent of the
interpolating function. The particular interpolating function developed in ° 2.2, a biquintic Hermite polynomial, faithfully
reproduces the underlying Helmholtz free energy data in the table (Figs. 1È3) and yields derivatives of the pressure, speciÐc
entropy, and speciÐc internal energy that are smooth and continuous (Figs. 4È6). The resulting Helmholtz EOS is generally
more accurate, more thermodynamically consistent, and executes faster (Tables 1 and 2) than any of the Ðve EOS routines
examined in the Timmes & Arnett survey. This suggests that when an optimal balance of accuracy, thermodynamic consis-
tency, and speed is desirable, then the Helmholtz EOS is an excellent choice, particularly for multidimensional models of
stellar phenomena.
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APPENDIX A

THERMODYNAMICALLY CONSISTENT INTERPOLATION SUBROUTINE

A FORTRAN subroutine that implements the thermodynamically consistent, biquintic Hermite interpolation scheme for
an electron-positron plasma is given below. Note the scaling with so that a two-dimensional table of the Helmholtz freeY

e
;

energy F(o, T ) constructed for (pure hydrogen) is valid for any composition. Some execution efficiency has beenY
e
\ 1

sacriÐced in order to gain clarity or shorten the printed length. An example of this inefficiency are multiple divisions which
occur could be computed once and stored. Another inefficiency is storing the Helmholtz free energy and its eight derivatives in
separate arrays ; storing the nine points sequentially in an array generally results in more efficient use of cache memory.
Finally, the main table lookup could be done only once instead of the six times as done below; this will further improve the
cache hit rate.

subroutine tcteos(temp,den,ye,
1 ptot,etot,stot,dpdd,dpdt,dedd,dedt,dsdd,dsdt)
implicit none
save

c..
c..this routine performs a thermodynamically consistent interpolation
c..in a tabular electron-positron equation of state using biquintic
c..hermite basis functions.
c..
c..input:
c..temp = temperature(in K)
c..den = density (in g cm~3)
c..ye = electrons per baryon = zbar/abar
c..
c..also input through a common block is the table of the helmholtz
c..free energy and eight of its partial derivatives:
c..f, df–d, df–t, df–dd, df–tt, df–dt, df–ddt, df–dtt and df–ddtt
c..
c..output:
c..ptot = pressure (ergs cm~3)
c..etot = specific internal energy (ergs g~1)
c..stot = specific entropy (ergs g~1 K~1)
c..dpdd = partial derivative of pressure with density (ergs g~1)
c..dpdt = partial derivative of pressure with temperature (ergs cm~3 K~1)
c..dedd = partial derivative of energy with density (ergs cm~3 g~2)
c..dedt = partial derivative of energy with temperature (ergs g~1 K~1)
c..dsdd = partial derivative of entropy with density (ergs cm~3 g~2 K~1)
c..dsdt = partial derivative of entropy with temperature (ergs g~1 K~2)
c..
c..declare the pass

double precision temp,den,ye,ptot,etot,stot,dpdd,dpdt,dedd,dedt,
1 dsdd,dsdt

c..declare the internal variables
integer i,j,iat,jat
double precision tlo,thi,tstp,tstpi,dlo,dhi,dstp,dstpi,

1 tsav,dsav,free,df–d,df–t,df–dd,df–tt,df–dt,dt,dt2,dti,dt2i,dd,
2 dd2,ddi,dd2i,xt,xd,mxt,mxd,si0t,si1t,si2t,si0mt,si1mt,si2mt,si0d,
3 si1d,si2d,si0md,si1md,si2md,dsi0t,dsi1t,dsi2t,dsi0mt,dsi1mt,
4 dsi2mt,dsi0d,dsi1d,dsi2d,dsi0md,dsi1md,dsi2md,ddsi0t,ddsi1t,
5 ddsi2t,ddsi0mt,ddsi1mt,ddsi2mt,ddsi0d,ddsi1d,ddsi2d,ddsi0md,
6 ddsi1md,ddsi2md,z,psi0,dpsi0,ddpsi0,psi1,dpsi1,ddpsi1,psi2,dpsi2,
7 ddpsi2,w0t,w1t,w2t,w0mt,w1mt,w2mt,w0d,w1d,w2d,w0md,w1md,w2md,
8 din,herm5
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c..the coefficient arrays have been read in elsewhere, bring them in
c..through a common block communication. the array d(1:imax) holds the
c..density grid points, and t(1:jmax) holds the temperature grid points.
c..change imax and jmax to whatever size the table might be.

integer imax,jmax
parameter (imax = 100, jmax = 50)
double precision d(imax),t(jmax)
double precision f(imax,jmax),fd(imax,jmax),ft(imax,jmax),

1 fdd(imax,jmax),ftt(imax,jmax),fdt(imax,jmax),fddt(imax,jmax),
2 fdtt(imax,jmax),fddtt(imax,jmax)
common /htable/ f,fd,ft,fdd,ftt,fdt,fddt,fdtt,fddtt

c..quintic hermite basis statement functions
c..psi0 and its derivatives

psi0(z) = z~33 * ( z * (-6.0d0*z + 15.0d0)-10.0d0) + 1.0d0
dpsi0(z) = z~2 * ( z * (-30.0d0*z + 60.0d0)-30.0d0)
ddpsi0(z) = z* ( z * (-120.0d0*z + 180.0d0)-60.0d0)

c..psi1 and its derivatives
psi1(z) = z* ( z~2 * ( z * (-3.0d0*z + 8.0d0)-6.0d0) + 1.0d0)
dpsi1(z) = z*z * ( z * (-15.0d0*z + 32.0d0)-18.0d0) + 1.0d0
ddpsi1(z) = z * ( z * (-60.0d0*z + 96.0d0)-36.0d0)

c..psi2 and its derivatives
psi2(z) = 0.5d0*z*z*(z * (z* (-z + 3.0d0)-3.0d0) + 1.0d0)
dpsi2(z)= 0.5d0*z*(z *(z*(-5.0d0*z + 12.0d0)-9.0d0) + 2.0d0)
ddpsi2(z) = 0.5d0*(z* (z* (-20.0d0*z + 36.0d0)-18.0d0) + 2.0d0)

c..bicubic hermite polynomial statement function
herm5(i,j,w0t,w1t,w2t,w0mt,w1mt,w2mt,w0d,w1d,w2d,w0md,w1md,w2md)=

1 f(i,j) *w0d*w0t + f(i+1,j) *w0md*w0t
2 +f(i,j+1) *w0d*w0mt + f(i+1,j+1) *w0md*w0mt
3 +ft(i,j) *w0d*w1t + ft(i+1,j) *w0md*w1t
4 +ft(i,j+1) *w0d*w1mt + ft(i+1,j+1) *w0md*w1mt
5 +ftt(i,j) *w0d*w2t + ftt(i+1,j) *w0md*w2t
6 +ftt(i,j+1) *w0d*w2mt + ftt(i+1,j+1) *w0md*w2mt
7 +fd(i,j) *w1d*w0t + fd(i+1,j) *w1md*w0t
8 +fd(i,j+1) *w1d*w0mt + fd(i+1,j+1) *w1md*w0mt
9 +fdd(i,j) *w2d*w0t + fdd(i+1,j) *w2md*w0t
& +fdd(i,j+1) *w2d*w0mt + fdd(i+1,j+1) *w2md*w0mt
1 +fdt(i,j) *w1d*w1t + fdt(i+1,j) *w1md*w1t
2 +fdt(i,j+1) *w1d*w1mt + fdt(i+1,j+1) * w1md*w1mt
3 +fddt(i,j) *w2d*w1t + fddt(i+1,j) *w2md*w1t
4 +fddt(i,j+1) *w2d*w1mt + fddt(i+1,j+1) *w2md*w1mt
5 +fddtt(i,j) *w1d*w2t + fdtt(i+1,j) *w1md*w2t
6 +fdtt(i,j+1) *w1d*w2mt + fdtt(i+1,j+1) *w1md*w2mt
7 +fddtt(i,j) *w2d*w2t + fddtt(i+1,j) *w2md*w2t
8 +fddtt(i,j+1) *w2d*w2mt + fddtt(i+1,j+1)*w2md*w2mt

c..find the table locations, entering with ye * density
c..change the jat and iat lines if the table is not hashed in log space

jat = int((log10(temp) - tlo)/tstp) + 1
din = ye * den
iat = int((log10(din) - dlo)/dstp) + 1

c..various differences
dt = t(jat+1) - t(jat)
dt2 = dt * dt
dd = d(iat+1) - d(iat)
dd2 = dd * dd
xt = max((temp - t(jat))/dt, 0.0d0)
xd = max((din - d(iat))/dd,0.0d0)
mxt = 1.0d0 - xt
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mxd = 1.0d0 - xd

c..evaluate the basis functions
si0t = psi0(xt)
si1t = psi1(xt)*dt
si2t = psi2(xt)*dt2

si0mt = psi0(mxt)
si1mt = -psi1(mxt)*dt
si2mt = psi2(mxt)*dt2

si0d = psi0(xd)
si1d = psi1(xd)*dd
si2d = psi2(xd)*dd2

si0md = psi0(mxd)
si1md = -psi1(mxd)*dd
si2md = psi2(mxd)*dd2

c..and their first derivatives
dsi0t = dpsi0(xt)/dti
dsi1t = dpsi1(xt)
dsi2t = dpsi2(xt)*dt

dsi0mt = -dpsi0(mxt)/dt
dsi1mt = dpsi1(mxt)
dsi2mt = -dpsi2(mxt)*dt

dsi0d = dpsi0(xd)/dd
dsi1d = dpsi1(xd)
dsi2d = dpsi2(xd)*dd

dsi0md = -dpsi0(mxd)/dd
dsi1md = dpsi1(mxd)
dsi2md = -dpsi2(mxd)*dd

c..and their second derivatives
ddsi0t = ddpsi0(xt)/dt2
ddsi1t = ddpsi1(xt)/dt
ddsi2t = ddpsi2(xt)

ddsi0mt = ddpsi0(mxt)/dt2
ddsi1mt = -ddpsi1(mxt)/dt
ddsi2mt = ddpsi2(mxt)

ddsi0d = ddpsi0(xd)/dd2
ddsi1d = ddpsi1(xd)/dd
ddsi2d = ddpsi2(xd)

ddsi0md = ddpsi0(mxd)/dd2
ddsi1md = -ddpsi1(mxd)/dd
ddsi2md = ddpsi2(mxd)

c..the free energy
free = herm5(iat,jat,

1 si0t,si1t,si2t,si0mt,si1mt,si2mt,
2 si0d,si1d,si2d,si0md,si1md,si2md)

c..derivative of the free energy with density
df–d = herm5(iat,jat,

1 si0t,si1t,si2t,si0mt,si1mt,si2mt,
2 dsi0d,dsi1d,dsi2d,dsi0md,dsi1md,dsi2md)

c..derivative of the free energy with temperature
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df–t = herm5(iat,jat,
1 dsi0t,dsi1t,dsi2t,dsi0mt,dsi1mt,dsi2mt,
2 si0d,si1d,si2d,si0md,si1md,si2md)

c..second derivative free energy with to density~2
df–dd = herm5(iat,jat,

1 si0t,si1t,si2t,si0mt,si1mt,si2mt,
2 ddsi0d,ddsi1d,ddsi2d,ddsi0md,ddsi1md,ddsi2md)

c..second derivative of the free energy with temperature~2
df–tt = herm5(iat,jat,
1 ddsi0t,ddsi1t,ddsi2t,ddsi0mt,ddsi1mt,ddsi2mt,
2 si0d,si1d,si2d,si0md,si1md,si2md)

c..second derivative of the free energy with to temperature and density
df–dt = herm5(iat,jat,
1 dsi0t,dsi1t,dsi2t,dsi0mt,dsi1mt,dsi2mt,
2 dsi0d,dsi1d,dsi2d,dsi0md,dsi1md,dsi2md)

c..set the return arguments; the electron-positron
c..pressure, specific entropy, and internal energy
c..along with their partial derivatives

ptot = din~2 * df–d
dpdt = din~2 * df–dt
dpdd = ye * (din~2 * df–dd + 2.0d0 * din * df–d)

stot = -df–t * ye
dsdt = -df–tt * ye
dsdd = -df–dt * ye~2

etot = ye * free + temp * stot
dedt = temp * dsdt
dedd = ye~2 * df–d + temp * dsdd
return
end
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