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ABSTRACT

We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and

enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the

physics of convection, and yields reliable values of the convective core mass during both hydrogen and helium burning

phases. Stars with M < 8 M� become white dwarfs and cool to the point where the electrons are degenerate and the

ions are strongly coupled, a realm now available to study with MESA due to improved treatments of element diffusion,

latent heat release, and blending of equations of state. Studies of the final fates of massive stars are extended in

MESA by our addition of an approximate Riemann solver that captures shocks and conserves energy to high accuracy

during dynamic epochs. We also introduce a 1D capability for modeling the effects of Rayleigh-Taylor instabilities

that, in combination with the coupling to a public version of the STELLA radiation transfer instrument, creates new
avenues for exploring Type II supernovae properties. These capabilities are exhibited with exploratory models of

pair-instability supernova, pulsational pair-instability supernova, and the formation of stellar mass black holes. The

applicability of MESA is now widened by the capability of importing multi-dimensional hydrodynamic models into

MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization,

and four new software tools − MESA-Web, MESA-Docker, pyMESA, and mesastar.org − to enhance MESA’s education and

research impact.
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1. INTRODUCTION

Over the next decade multi-messenger astronomy will

probe the rich stellar astrophysics of transient phenom-

ena in the sky, including gravitational waves from the

mergers of neutron stars and black holes, light curves

and spectra from core-collapse supernovae, and the os-

cillation modes of stars. On the observational side of

this new era, the Laser Interferometer Gravitational-

Wave Observatory has demonstrated the existence of

binary stellar-mass black hole systems (Abbott et al.

2016a,b,c, 2017a,b) and continues to monitor the sky

with broadband detectors for gravitational waves from

compact binary inspirals and asymmetrical exploding

massive stars (Fryer et al. 2002; Gossan et al. 2016; Ab-

bott et al. 2016d,e,f, 2017a). The Gaia Data Release 1,

http://mesastar.org
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containing about one billion stars, begins the process

of converting the spectrophotometric measurements to

distances, proper motions, luminosities, effective tem-

peratures, surface gravities, and elemental compositions

(Gaia Collaboration et al. 2016a,b). This stellar cen-

sus will provide the observational data to tackle a range

of questions related to the origin, structure, and evo-

lutionary history of stars in the Milky Way (Creevey

et al. 2015; Sacco et al. 2015; Lindegren et al. 2016;

van Leeuwen et al. 2017). The Neutron star Interior

Composition Explorer mission, delivered to the Interna-

tional Space Station in June 2017, will provide rotation-

resolved spectroscopy of the thermal and non-thermal

emissions of neutron stars in the soft X-ray band with

over 15 million seconds of exposures (Gendreau et al.

2012; Arzoumanian et al. 2014; Gendreau et al. 2016)

to open a new window into the interior structure and

dynamics that underlie neutron stars (e.g., Özel et al.

2016; Miller 2016). With first light at Palomar Obser-

vatory in 2017, the Zwicky Transient Facility (Kulkarni

2016) will scan more than 3750 deg2 hr−1 to a depth of

about 20 mag to discover young supernovae less than 24

hours after explosion each night, hunt for electromag-

netic counterparts of gravitational-wave events (Ghosh

et al. 2017), and search for rare and exotic transients.

Repeated imaging of the Northern sky, including the

Galactic Plane, will produce a photometric variability

catalog with nearly 300 observations each year (La-

her et al. 2017) for detailed studies of variable stars

and binary systems. From its unique high earth or-

bit, the Transiting Exoplanet Survey Satellite aims to

survey about 200,000 nearby G, K and M type stars

with apparent magnitudes brighter than about 12 mag

with a 1 minute cadence across a 400 deg2 area of the

sky (Ricker et al. 2016; Sullivan et al. 2015, 2017) to

open a new era on stellar variability. The Large Syn-

optic Survey Telescope will image the entire Southern

Hemisphere deeply in multiple optical colors every week

with a 3.5 deg2, three billion pixel digital camera (LSST

Science Collaboration et al. 2017) to open new per-

spectives on transient objects such as tidal disruption

events (Bade et al. 1996; Stern et al. 2004; Arcavi et al.

2014; Komossa 2015) and interacting close binary sys-

tems (Oluseyi et al. 2012; Korol et al. 2017). The Jiang-

men Underground Neutrino Observatory will usher in a

new generation of multipurpose neutrino detectors (Li

2014; Brugière 2017) designed in part to open a new

avenue on neutrinos from pre-supernova massive stars

(e.g., Odrzywolek 2009; Misch & Fuller 2016; Patton

et al. 2017a,b) and core-collapse supernova explosions

(e.g., Hirata et al. 1987; Janka 2017).

This ongoing explosion of activity in multi-messenger

stellar astronomy powers theoretical and computational

developments, in particular the evolution of the com-

munity software instrument Modules for Experiments

in Stellar Astrophysics (MESA) for research and educa-

tion. We introduce MESA in Paxton et al. (2011, Pa-

per I) and significantly expand its range of capabilities

in Paxton et al. (2013, Paper II) and Paxton et al. (2015,

Paper III). These prior papers, as well as this one, are

“instrument” papers that describe the capabilities and

limitations of MESA while also comparing to other avail-

able numerical or analytic results. This paper describes

the major new advances to MESA for modeling convec-

tive boundaries, element diffusion, implicit shock hydro-

dynamics, massive star explosions and light curves, pul-

sational pair-instability supernovae, and black hole for-

mation. We do not fully explore these results and their

implications here. The scientific potential of these new

capabilities will be unlocked in future work via the ef-

forts of the MESA user community.

The convective regions of stars remain a rich site of

fascinating challenges including the interplay between

mixing, composition gradients, and element diffusion.

A convection region transports energy through the ver-

tical exchange of matter. The location where the radial

velocity of the bulk motions goes to zero is a natural

way to define the edge of a convection region (Vitense

1953; Böhm-Vitense 1958). It is necessary to ensure

that convective boundaries are properly positioned (e.g.,

Eggleton 1972; Gabriel et al. 2014), because their exact

placement can have a strong influence on the evolution

of the stellar model (Salaris & Cassisi 2017). An impor-

tant new addition to MESA is an improved treatment of

convective boundaries, allowing them to evolve toward

a state where the radiative gradient equals the adiabatic

gradient on the convective side of the boundary. As a

consequence, the Schwarzchild and Ledoux criteria now

give the same position for convective boundaries.

Gradients can drive changes in the composition profile

of a star. For example, if gradients occur in the con-

centrations of chemical elements, then diffusion tends

to smooth out the differences. Temperature gradients

can push heavier species towards regions of higher tem-

perature, while pressure gradients can propel heavier

species to diffuse towards regions of higher pressure

(Thoul et al. 1994; Hansen et al. 2004; Kippenhahn et al.

2012; Michaud et al. 2015). Treatments of diffusion typ-

ically assume that all diffusing species are ideal gases

(e.g., Burgers 1969; Thoul et al. 1994). For white dwarf

interiors and neutron star envelopes, degenerate elec-

trons violate this assumption (Deloye & Bildsten 2002;

Chang et al. 2010). In addition, strong Coulomb cou-
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pling in plasmas requires modifications to the binary

scattering formalism for calculating cross-sections used

to obtain diffusion coefficients (Paquette et al. 1986a;

Stanton & Murillo 2016; Daligault et al. 2016; Shaffer

et al. 2017). MESA’s extensions of element diffusion for

degenerate and strongly coupled plasmas open a path-

way into the regime relevant to sedimentation in the

interiors of white dwarfs (Iben & MacDonald 1985; Iben

et al. 1992; Koester 2009; Hollands et al. 2017) and the

surfaces of neutron stars (Chang & Bildsten 2003, 2004;

Beznogov et al. 2016).

Massive (M & 8 M�) stars explode when energy from

the collapse of their core to a compact object emerges as

an outgoing shock wave into the outer parts of the star.

The outward propagation of this shock wave generates

Rayleigh-Taylor instabilities that can mix material be-

hind the shock front (Chevalier 1976; Chevalier & Klein

1978; Weaver & Woosley 1980; Benz & Thielemann

1990; Herant & Benz 1991; Hammer et al. 2010; Wong-

wathanarat et al. 2015; Utrobin et al. 2017). The result-

ing light curves of Type II supernovae can be sub-divided

into multiple classes but we focus here on Type IIP su-

pernovae (e.g., Smartt 2009a, 2015; Smith et al. 2016).

Our improvements to MESA — implicit shock capturing

hydrodynamics, Rayleigh-Taylor instability modeling in

1D (Duffell 2016), and radiative transfer using the public

version of the STELLA instrument (Blinnikov & Sorokina

2004; Baklanov et al. 2005; Blinnikov et al. 2006) —

open up new avenues for researching the diverse set of

Type II supernovae.

Pair-instability leads to a partial collapse, which in

turn causes runaway thermonuclear burning in the

carbon-oxygen core (Fowler & Hoyle 1964; Rakavy &

Shaviv 1967; Barkat et al. 1967; Rakavy et al. 1967;

Fraley 1968). A wide variety of outcomes is possible

depending on the star’s mass and rotation. A single

energetic burst from nuclear burning can disrupt the

entire star without leaving a black hole remnant behind

to produce a pair-instability supernova (Ober et al.

1983; Fryer et al. 2001; Scannapieco et al. 2005; Kasen

et al. 2011; Chatzopoulos et al. 2013). Alternatively, a

series of bursts can trigger a cyclic pattern of nuclear

burning, expansion and contraction, leading to a pul-

sational pair-instability supernova that leaves a black

hole remnant (Barkat et al. 1967; Woosley et al. 2007a;

Chatzopoulos & Wheeler 2012; Woosley 2017; Limongi

2017). Many of these variations can now be explored in

MESA, as can lower mass progenitors that do not pulse

before collapse to a black hole.

MESA is a community-driven software instrument for

stellar astrophysics. New directions will be motivated

by features useful to the MESA user community, ad-

vances in the physics modules, algorithmic develop-

ments, and architectural evolution. Potential exam-

ples for expanding MESA’s scientific, computational, and

educational capabilities include seamlessly leveraging

many-core architectures, an improved treatment of the

equation of state, Jupyter/Python notebooks for edu-

cation, and continued integration with software instru-

ments useful to the astronomy and astrophysics commu-

nity. Examples include ADIPLS (Christensen-Dalsgaard

2008; Christensen-Dalsgaard & Thompson 2011), GYRE

(Townsend & Teitler 2013), and STELLA (Blinnikov et al.

1998; Blinnikov & Sorokina 2004; Baklanov et al. 2005;

Blinnikov et al. 2006).

The paper is organized as follows. Section 2 in-

troduces a new treatment of convective boundaries. In

Section 3 we present an implementation of element diffu-

sion that accounts for electron degeneracy and strongly

coupled interactions. Section 4 describes the Riemann

solver for shock capturing in MESA’s new implicit hy-

drodynamics solver, and Section 5 presents a model for

approximating the 3D effects of the Rayleigh-Taylor in-

stability. In Section 6 we introduce the coupling of MESA

and an implementation of the STELLA radiative transfer

instrument to explore the modeling of Type IIP super-

nova light curves from post-explosion to post-plateau. In

Section 7 we show advances to model pair-instability su-

pernova, pulsation pair-instability supernova, and black

hole formation. Section 8 discusses energy accounting

in stellar evolution.

Appendix A discusses improvements to estimating

a model’s absolute magnitude in a chosen color fil-

ter, Appendix B offers guidance on importing multi-

dimensional models into MESA, and Appendix C details

the implementation of element diffusion in MESA. Ap-

pendix D introduces two new software modules for han-

dling floating point exceptions and stellar model op-

timization, and four new software tools for education

and research: MESA-Web, MESA-Docker, pyMESA, and

mesastar.org.

Important symbols are defined in Table 1. Acronyms

used are denoted in Table 2. We denote components of

MESA, such as modules and routines, in typewriter font

e.g., colors.
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Table 1. Important Variables. Single character symbols are listed

first, symbols with modifiers are listed second. Some symbols may

be further subscripted by c (indicating a central quantity), by a

cell index k, or by an index that runs over species (i, j, s, or t).

Name Description First Appears

A Area of face 4.1

C Concentration 3.1

e Specific thermal energy 4.1

F Flux across cell face 4.1

γ Adiabatic index 4.4.1

Γ Plasma coupling parameter 8.5

K Resistance coefficient 3.1

λ Screening length 3.3

m Baryonic mass coordinate 2.2

M Stellar mass 2.2

µ Chemical potential 8.1

Φ Gravitational potential 8.3

q Specific heat 8.1

r Radial coordinate 3.1

s Specific entropy 8.1

S Wave speed 4.1

u Cell-centered velocity 4.1

w Diffusion velocity 3.1

z Resistance coefficient 3.1

Ā Average atomic number 8.1

αMLT Mixing length of MLT 6.7.1

cP Specific heat at constant pressure 8.2

cs Sound speed 4.1

cV Specific heat at constant volume 8.2

δt Numerical timestep 2.6

dm Mass of cell 4.1

dm Mass at cell face 4.1

DR Rayleigh-Taylor decay coefficient 5.1

eion Specific ionization energy 8.4

Eblast Blast energy 4.4.1

εextra Extra specific heating/cooling rate 4.1

εgrav Gravitational heating rate 8.1

εν Neutrino energy loss rate 4.1

εnuc Nuclear energy generation rate 4.1

Table 1 continued

Table 1 (continued)

Name Description First Appears

fov Convective overshoot parameter 6.7.1

Γ1 First adiabatic index 7

∇ad Adiabatic temperature gradient 2

∇L Ledoux temperature gradient 2.1

∇rad Radiative temperature gradient 2

∇T Temperature gradient from MLT 4.1

NB Number of baryons 8.1

Pgas Gas pressure 8.2

Prad Radiation pressure 8.2

P Pressure at cell face 4.1

qe Electric charge 3.2.2

ρe Charge density 3.1

T Temperature at cell face 4.1

τRos Rosseland optical depth 6.5

τsob Sobolev optical depth 6.5

χρ (∂logP/∂logρ)|T,X 8.2

χT (∂logP/∂logT )|ρ,X 8.2

Z̄ Average ion charge 8.1

Table 2. Acronyms used in this paper.

Acronym Description First Appears

AGB Asymptotic Giant Branch 8.4

BC Bolometric Correction A

BH Black Hole 7

CFL Courant-Friedrichs-Lewy 4.3

CHeB Core Helium Burning 2.4

CSM Circumstellar Material 6.2

EOS Equation of State 8

HLLC Harten-Lax-van Leer-Contact 4

HR Hertzsprung-Russell 2.4

IB Inner Boundary 6.1

LTE Local Thermal Equilibrium 8.1

MLT Mixing Length Theory 2

MS Main Sequence 2

PPISN Pulsational Pair-Instability SN 7

PISN Pair-instability SN 7

Table 2 continued
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Table 2 (continued)

Acronym Description First Appears

RTI Rayleigh-Taylor Instability 5

SN Supernova 4.4.3

SPH Smoothed Particle Hydrodynamics B

TAMS Terminal Age Main Sequence 2.2

WD White Dwarf 8

ZAMS Zero Age Main Sequence 2.2

2. CONVECTIVE BOUNDARIES

Gabriel et al. (2014) discuss the correct positioning of

convective boundaries in stellar evolution models. Fol-

lowing earlier work (e.g., Roxburgh 1978) they argue

that a convective boundary should be defined as the

point where the convective velocity vanishes. Within lo-

cal mixing-length theory (MLT), this condition is equiv-

alent to the requirement ∇rad = ∇ad, where ∇rad and

∇ad are the radiative and adiabatic temperature gradi-

ents, respectively. Critically, this equality must be sat-

isfied on the convective side of the boundary, because

the MLT convective velocity is only well defined there.

Moreover, because the fluid on the convective side is pre-

sumed to be well-mixed, the Ledoux temperature gradi-

ent ∇L = ∇ad + B (Equation 11 of Paper II) can play

no part in setting the location of the boundary.

If the chemical composition is continuous across the

convective boundary, then so too are ∇rad and ∇ad,

and requiring ∇rad = ∇ad on the convective side of the

boundary results in the same equality on the radiative

side. However, a composition discontinuity produces a

jump in density and opacity, and in turn a discontinuity

in ∇rad and ∇ad. Hence, it is generally the case that

∇rad 6= ∇ad on the radiative side of the boundary.

In numerical codes based on discrete grids, the nuance

of the foregoing discussion is often overlooked in favor

of a simple approach for locating convective boundaries

based on sign changes in the discriminant y = ∇rad−∇ad

(or y = ∇rad − ∇L, if the Ledoux stability criterion

is used). This approach works well when the chemi-

cal composition remains continuous, but is problematic

when the composition — and hence y — is discontin-

uous at the boundary; it typically leads to configura-

tions where ∇rad > ∇ad on the convective side, which

is unphysical and ultimately retards the growth of the

convective region. Previous versions of MESA have taken

this approach; the outcome is evident in Figure 15 of

Paper II, which shows the convective core mass as a

function of age during the He-burning evolution of a

3 M� star. In the model with no overshoot and the

Schwarzschild stability criterion, the core grows only

modestly in mass before reaching a plateau. Inspection

of the model confirms that ∇rad > ∇ad on the convec-

tive side of the core boundary, signifying that the core

growth is being impeded.

Gabriel et al. (2014) highlight a further issue with this

simple sign-change approach, whereby the location of

a convective boundary is not uniquely determined but

rather depends on the mixing history near the boundary.

We have confirmed this issue is present in MESA when

using the sign-change approach. This manifests itself as

a lack of convergence in some models (e.g., the 3 M�
He-burning example) when the resolution is increased

and/or the timestep shortened.

To resolve these issues we implement a new “predic-

tive mixing” scheme in MESA. It is inspired both by the

“maximal overshoot” scheme introduced by Constantino

et al. (2015), and by the procedure described by Bossini

et al. (2015). In the new scheme, the extent of a con-

vection region is allowed to expand at each time step

until the boundaries reach the point where ∇rad = ∇ad

on their convective side. We describe the new scheme in

detail in the following section and then present results

obtained with this scheme in four scenarios: a growing

convective core in a low-mass star on the main sequence

(MS), a retreating convective core in a high-mass star

on the MS, growing He-burning cores in intermediate-

and low-mass stars, and a surface convective region in

a low-mass star on the MS. In all cases, we assume an

initial He mass fraction Y = 0.28, an initial metal mass

fraction Z = 0.02, and we neglect rotation and mass

loss.

2.1. Predictive Mixing

The MESA predictive mixing scheme initially proceeds

in the same manner as the simple sign-change approach,

by finding the cells where y > 0 on one face (convective)

and y < 0 on the other face (radiative). For each of

these candidate boundary cells, the algorithm considers

how y would change if the cell were completely mixed

with the rest of the adjoining convection region. This

prediction involves re-evaluating opacities, densities and

other data throughout the mixed region, under the as-

sumption that the composition is completely uniform. If

y would become positive on both faces of the candidate

boundary cell, then the adjacent cell in the radiative

region becomes the new candidate boundary cell and a

new round of predictive mixing begins. The process con-

tinues iteratively until the candidate cell after the pre-

dictive mixing still has a negative y on the radiative face.

The code reverts to the previous candidate, identifies it

as the final convective boundary cell, recalculates con-
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vective diffusivities and convective velocities using MLT,

and writes these into the model for use in the compo-

sition solver (see Paper I, Section 6.2). No abundances

are directly modified in the model during the predictive

iterations. Below, we demonstrate that this algorithm

leads MESA to a solution of the stellar structure equa-

tions in which 0 ≤ y � ∇ad on the convective side of

each boundary cell.

The physical justification for our predictive mixing

scheme traces back to a narrative advanced by Castel-

lani et al. (1971). Focusing on He core-burning, these

authors argue that any gentle mixing outside the core

boundary irreversibly alters the composition there, and

the resulting increase in opacity raises the local ∇rad

from sub-adiabatic to super-adiabatic. The outcome is

a ‘self-driving mechanism for the extension of the con-

vective region’, which continues until ∇rad = ∇ad on the

convective side of the core boundary. While Castellani

et al. (1971) invoked overshoot as the source of the mix-

ing outside the boundary, Michaud et al. (2007) show

that element diffusion can serve equally well and leads

to the same outcome.

For MS stars with growing convective cores, the exten-

sion of the core boundary cannot be driven in exactly the

same way as the He-burning case, because helium has

a lower opacity than hydrogen. However, gentle mix-

ing outside the core boundary erases any composition

gradients there, and it is the loss of these gradients—

and their accompanying stabilizing effect—that drives

the extension of the convective region until ∇rad = ∇ad

on the convective side of the core boundary.

The predictive mixing scheme doesn’t specify the na-

ture of the gentle mixing beyond convective boundaries,

instead focusing on its effects. Tied in with this agnos-

ticism is the presumption that the mixing-driven expan-

sion of convective boundaries is so rapid that it can be

approximated as instantaneous. This is likely a reason-

able approach during core H and He burning; Castellani

et al. (1971) argue that the growth of the core boundary

in the latter case should proceed on a timescale which

is much shorter than the burning lifetime. However,

there may be circumstances where the finite timescale

for boundary growth cannot be neglected.

Because uniform composition is assumed during the

predictive mixing iterations, there is no functional dis-

tinction between the Schwarzschild and Ledoux criteria

when evaluating the discriminant y. However, the pre-

liminary search for sign changes in y, before any pre-

dictions are made, does take into account composition

gradients when the Ledoux criterion is used. As a re-

sult, the initial candidate boundary cells can differ be-

tween the two criteria. In many cases this difference is
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Figure 1. The mass coordinate mbdy of the convective-core
boundary plotted as a function of MS age, for the 1.5 M� stel-
lar model discussed in Section 2.2. Different line styles/colors
show the separate runs described in the text.

unimportant, with the final location of the boundaries

being insensitive to the choice of criterion. The one ex-

ception is when a region with ∇ad < ∇rad < ∇L is

bounded on both sides by radiative regions; then, it will

be completely overlooked during a preliminary search

with the Ledoux criterion. As we shall demonstrate

later, such scenarios arise in our calculations outside

convective cores during MS evolution.

2.2. Evolution of a Growing Convective Core on the

Main Sequence

We evolve a 1.5 M� star from the zero age main

sequence (ZAMS) to the terminal age main sequence

(TAMS) using the predictive mixing scheme at the con-

vective core boundary; this is the same mass and evo-

lutionary stage considered in Section 5.1.2 of Gabriel

et al. (2014). Figure 1 plots the mass coordinate of the

convective-core boundary as a function of MS age, show-

ing results from separate runs using Schwarzschild and

Ledoux criteria, and additional runs with the incremen-

tal inclusion of semi-convection (in just the Ledoux case)

and then element diffusion (in both cases). The semi-

convection is modeled using the Langer et al. (1985)

scheme with an efficiency parameter αsc = 0.1 (see Pa-

per II for a complete description of the semi-convection

implementation in MESA). For comparison, the figure also

shows the outcome of using the Ledoux criterion but no

predictive mixing; in contrast to the other cases which

broadly agree with one another, the core growth is inhib-

ited and the H-burning lifetime correspondingly trun-

cated.

Note that in Figure 13 of Paper II the results obtained

with the Ledoux criterion show a shrinking convective
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Figure 2. Profiles of ∇rad, ∇ad, ∇L, and X as a function of mass coordinate, in the inner part of the 1.5 M� stellar model
at Xc = 0.42. The panels show the separate runs described in the text. Gray shading indicates regions undergoing convection.
Unless otherwise indicated, all models used predictive mixing.

core; this behavior was due to a separate problem arising

from over-smoothing of the composition gradient (see

Moore & Garaud 2016) and has since been rectified in

MESA. For completeness, we include this case in Figure 1.

Figure 2 plots the profiles of ∇rad, ∇ad, ∇L and

X, in the inner part of the 1.5 M� star nearing the

halfway point of its MS evolution (a core H mass frac-

tion Xc = 0.42). In the upper row, the left panel il-

lustrates the run with the Ledoux criterion plus predic-

tive mixing (the dotted curve in Figure 1), while the

right panel shows the run with the Ledoux criterion

but without predictive mixing (the black curve, ibid.).

Clearly, without predictive mixing ∇rad remains signif-

icantly larger than ∇ad on the convective side of the

boundary, which as discussed previously is physically

inconsistent. When using predictive mixing, however,
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the profiles satisfy ∇rad = ∇ad on the convective side,

and closely match those seen in the left panel in Fig-

ure 6 of Gabriel et al. (2014). The small bump in ∇rad

just above the boundary is Schwarzschild unstable but

Ledoux stable.

The middle panels of Figure 2 show the runs with

the Ledoux criterion and predictive mixing, and the in-

cremental addition of semi-convection (left) and then

element diffusion (right). Inside the core boundary,

the profiles are almost identical to those shown in the

upper-left panel but just outside the boundary, the semi-

convection converts the composition discontinuity into a

steep gradient and flattens the bump in ∇rad to a neu-

tral, ∇rad = ∇ad profile. Element diffusion further soft-

ens the abundance profile, as shown in the middle-right

panel. Note that element diffusion has only a small ef-

fect on the location of the convective boundary; this is

barely noticeable in Figure 2, but a slight extension of

the boundary can be seen in Figure 1 toward the later

part of the MS, for the two cases including diffusion.

The lower panels of Figure 2 show the runs using the

Schwarzschild criterion and predictive mixing, without

(left) and with (right) element diffusion. In the left

panel, the abundance profile shows a chaotic staircase-

like profile, due to mixing by transient convective shells

that appear and disappear from one timestep to the next

(two of these shells can be seen in the figure). The shells

do not appear in the Ledoux plots (middle and upper

panels) because the region outside the core is stabilized

in its entirety by the abundance gradient: ∇rad < ∇L.

This serves as a good illustration of the earlier discus-

sion (Section 2.1) of how the Schwarzschild and Ledoux

criteria can sometimes lead to different outcomes. It is

important to note, however, that the location of the core

boundary is the same in all cases with predictive mixing;

the differences only appear in the inhomogeneous region

beyond the boundary which arises from slow H burning

outside the core.

The lower-right panel of Figure 2 shows that adding el-

ement diffusion removes the abundance discontinuities,

replacing them with a smooth gradient. The result-

ing profiles appear almost identical to the Ledoux case

shown in the middle-right panel of the figure (and com-

pare also the curves with diffusion in Figure 1).

2.3. Evolution of a Retreating Convective Core on the

Main Sequence

We now evolve a 16 M� star from ZAMS to TAMS us-

ing the new predictive mixing scheme at the convective

core boundary; this is the same mass and evolution-

ary stage considered in Section 5.1.1 of Gabriel et al.

(2014). Figure 3 plots the mass of the convective core
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Figure 3. The mass coordinate mbdy of the convective-
core boundary as a function of MS age, for the 16 M� stellar
model discussed in Section 2.3. Different line styles/colors
show the separate runs described in the text.

as a function of MS age, showing results from separate

runs using the Schwarzschild and Ledoux criteria, and

with and without predictive mixing. The agreement be-

tween these four cases is very close. However, as was the

case in the preceding section, there are differences out-

side the convective core. These can be seen in Figure 4,

which plots the profiles of ∇rad, ∇ad, ∇L and X near

the end of the star’s MS evolution (Xc = 0.15), for the

two runs with predictive mixing.

Even though both runs exhibit the same core struc-

ture, with ∇rad = ∇ad at the convective side of the

core boundary, the inhomogeneous region left behind

by the retreating core is very different. The H abun-

dance obtained with the Schwarzschild criterion shows

the same staircase-like profile seen in the lower-left panel

of Figure 2, again due to mixing by transient convective

shells. These shells are not present when the Ledoux

criterion is used, with the exception of a persistent soli-

tary shell at the top of the inhomogeneous region (cor-

responding to where the core boundary was located at

the ZAMS); the behavior of this shell is discussed by

Gabriel et al. (2014, their Section 5.5.1; and compare

also against their Figure 4). Between the shell and the

core boundary, the abundance profile from the Ledoux

run remains relatively smooth. The different abundance

profiles in the two runs will have a direct influence on

the Brunt-Väisälä frequency profile, and therefore on the

oscillation frequencies of the stellar model.

2.4. Evolution of the Convective Core during Core He

Burning
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Figure 4. Profiles of ∇rad, ∇ad, ∇L, and X as a function of mass coordinate, in the inner part of the 16 M� stellar model at
Xc ≈ 0.15. The panels show the separate runs described in the text. Gray shading indicates regions undergoing convection.
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Figure 5. The mass coordinate mbdy of the convective-
core boundary plotted as a function of CHeB age, for the
1 M� stellar model discussed in Section 2.4. Different line
styles/colors show the separate runs described in the text.

As reviewed by Salaris & Cassisi (2017), the model-

ing of mixing in low- and intermediate-mass stars dur-

ing core He burning (CHeB) is particularly challenging.

Correct treatment of convective boundaries is compli-

cated by the fact that the ∇rad profile within the core

convection region develops a local minimum at some

point during CHeB evolution (see the middle and lower

panels of Figure 6). This is a consequence of the com-

plex behavior of the physical quantities (opacity, tem-

perature, density, etc.) involved in the expression for

∇rad. With further outward propagation of the con-

vective boundary, the mixing of fresh He into the core

can lower the radiative gradient throughout the core to

such an extent that ∇rad = ∇ad at the local minimum

of ∇rad. When this happens, the part of the convec-

tion region interior to the minimum becomes decoupled

from the part exterior to the minimum: the convection

region has split. This phenomenon was first discussed

by Eggleton (1972), and a variety of ad-hoc approaches

have been proposed to follow the subsequent evolution,

mostly focused around the narrative that the exterior

part undergoes partial mixing with the adjacent radia-

tive region until it reaches convective neutrality (see,

e.g., Castellani et al. 1985, and references therein).

Another problem appears near the end of CHeB. At

that point, even small amounts of He added to the core

(which is almost totally depleted in He) will enhance

the rate of energy production and thus the luminosity,

resulting in an increase in ∇rad. This increase leads to
a sudden growth in the core boundary and a “breathing

pulse”. The He is then quickly burned in the core and

the star re-adjusts itself. The existence of these breath-

ing pulses remains controversial and it is still unclear

whether they are numerical or physical (Caputo et al.

1989; Cassisi et al. 2003; Farmer et al. 2016; Constantino

et al. 2017). All of these problems are clearly described

and illustrated in Salaris & Cassisi (2017).

To manage these complexities, the predictive mixing

scheme must be modified. When a convection region

splits, it is no longer meaningful to re-evaluate y using

opacities and other data calculated on the assumption of

uniform composition throughout (Section 2.1), because

the radiative region appearing at the split point prevents

the free exchange of material between the adjacent con-

vection regions. Although in principle we could resort

to the partial mixing mentioned above, in practice it is
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Figure 6. Profiles of ∇rad, ∇ad, and Y as a function of
mass coordinate, for the 1 M� stellar model. The panels cor-
respond to different stages during CHeB: Yc = 0.9 (upper),
Yc = 0.6 (middle), and Yc = 0.3 (lower). Gray shading
indicates regions undergoing convection.

not clear how this might be implemented within a diffu-

sive mixing framework. Constantino et al. (2015) have

developed an overshoot-like prescription which appears

useful for mimicking the convective neutrality achieved

by partial mixing (see their Section 2.3.3), but it in-
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Figure 7. The mass coordinate mbdy of the convective-
core boundary plotted as a function of CHeB age, for the
3 M� stellar model discussed in Section 2.4. Different line
styles/colors show the separate runs described in the text.

volves a number of unconstrained parameters. There-

fore, on grounds of simplicity and pragmatism — and

recognizing that better approaches may become appar-

ent in the future — we modify the predictive scheme to

prevent it from causing a convection region to split in

the first place. This involves a new control parameter,

predictive_superad_thresh; if during the predictive

mixing iterations the super-adiabaticity ∇rad/∇ad − 1

drops below this threshold anywhere in the mixed re-

gion, then the code backs off the mixing by one cell and

updates the model convective diffusivities and convec-

tive velocities in the usual manner.

Further functionality, controlled by a new parame-

ter predictive_avoid_reversal, also helps to prevent

splitting and breathing pulses. When this parameter is

set to the name of a MESA isotope, then the code mon-

itors how the predictive mixing alters the abundance

evolution of that isotope in the convection region. If it

would cause this evolution to reverse (i.e., switch from

decreasing to increasing, or vice-versa), then the code

backs off the mixing by one cell and updates the model

as before. Thus, for instance, setting this parameter to

‘he4’ during CHeB ensures that the predictive mixing

scheme does not cause the core He abundance to increase

across a timestep.

To illustrate the preceding discussion, we evolve

a 1 M� star through CHeB; this is the same mass

considered by Constantino et al. (2015). Figure 5

plots the mass of the convective core as a function

of CHeB age (defined as the time elapsed since the

central Y drops below 0.98), showing results from sep-

arate runs with and without predictive mixing, and
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Figure 8. Evolution of the 3 M� stellar model in the HR diagram, from ZAMS to the beginning of CHeB (left), and throughout
the CHeB phase (right). Separate tracks show the different cases considered in the text; in the left panel, the Schwarzschild
track without predictive mixing lies beneath the tracks with predictive mixing.

using the Schwarzschild and Ledoux criteria. For

the cases with predictive mixing, we adopt a value

of 0.005 for the predictive_superad_thresh param-

eter, and set predictive_avoid_reversal to ‘he4’

to prevent any reversal in the core He abundance.

Figure 5 also shows the results from an additional

Ledoux/predictive mixing run where we allow the core

to split by not setting the predictive_avoid_reversal

and predictive_superad_thresh controls.

Figure 5 shows that without predictive mixing the

core is prevented from growing, and the CHeB life-

time significantly curtailed, irrespective of whether the

Schwarzschild or Ledoux criteria are used (see also Fig-

ure 15 of Paper II). With predictive mixing but no split-

ting allowed, however, the core grows steadily until He

is exhausted, and no breathing pulses are seen. There

is almost no difference between the Schwarzschild and

Ledoux cases. When the core is allowed to split, the

evolution is much noisier. Starting at an age ≈ 25 Myr,

the core undergoes episodes of splitting and rejoining

that repeat on a short timescale. Toward the end of

the evolution, as the core helium abundance becomes

very small, the timescale between successive splittings

becomes longer, until the core finally splits without re-

joining. The overall CHeB lifetime of the model is short-

ened by ≈ 6 Myr relative to the cases where splitting is

avoided.

Figure 6 plots the profiles of ∇rad, ∇ad and Y for the

1 M� star at three points during its CHeB evolution,

corresponding to core helium mass fractions Yc = 0.9,

0.6 and 0.3. The profiles are all from the run with

the Ledoux criterion and predictive mixing. In the

upper panel, a local minimum in ∇rad has yet to de-

velop, and the core boundary satisfies the ∇rad = ∇ad

equality on its convective side. In the middle and

lower panels, the local minimum in ∇rad can clearly be

seen; in these cases, the predictive mixing has extended

the convection region as far as possible without push-

ing the minimum ∇rad below the threshold set by the

predictive_superad_thresh control. MESA treats the

region between the ∇rad minimum and the convective

boundary as fully convective. On the convective side

of this boundary ∇rad > ∇ad, which is physically in-

consistent but cannot be remedied with predictive mix-

ing alone: any further extension of the boundary would

cause the convection region to split. As discussed above,

fixing this inconsistency requires some way of modeling

the partial mixing expected to occur in the part of the

convection region between the ∇rad minimum and the

boundary.

The abundance profiles plotted in Figure 6 show a

sharp transition between the He-depleted core and the

He-rich radiative region above. Although not shown,

the carbon and oxygen abundance profiles exhibit cor-

responding jumps at the core boundary. Similar results

are obtained by Constantino et al. (2015) with their

“maximal overshoot” scheme (cf. their Figure 2); and

those authors also find a core mass evolution during

CHeB that closely resembles the outcome from predic-

tive mixing (cf. their Figure 8 and our Figure 5). These

similarities are not coincidental; although the predictive

mixing and maximal overshoot schemes have different

narratives and implementations, both have the effect of

growing the core boundary during CHeB to the greatest

extent permitted without causing the convection region

to split. The larger cores that result from this growth
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appear to provide a better match to Kepler asteroseis-

mic period spacings, when compared with other mixing

schemes that produce smaller cores (Constantino et al.

2015); and with certain assumptions about post-CHeB

evolution, the larger cores can also provide a satisfactory

fit to observational cluster counts (Constantino et al.

2016).

To explore whether the predictive mixing performs

equally well for a higher-mass star that has not passed

through the He flash, we also evolve a 3 M� star

through CHeB; this is the same mass and evolution-

ary stage considered in Figure 15 of Paper II. Fig-

ure 7 plots the mass of the convective core as a func-

tion of CHeB age, showing results from separate runs

with and without predictive mixing, and using the

Schwarzschild and Ledoux criteria. For the cases with

predictive mixing, we again adopt a value of 0.005

for the predictive_superad_thresh parameter, and

set predictive_avoid_reversal to ‘he4’ to prevent

any reversal in the core He abundance. As before, we

find that the predictive mixing allows the core to grow

steadily; and that the Schwarzschild and Ledoux criteria

give essentially the same outcome.

As a visual summary of how predictive mixing in-

fluences a star’s evolution, Figure 8 plots evolutionary

tracks of the 3 M� model in the Hertzsprung-Russell

(HR) diagram, for the same combinations of mixing and

stability criteria considered in Figure 7. The left panel

focuses on the MS and red giant branch phases, and

the right panel on the CHeB phase. In the left panel,

the case with the Ledoux criterion but without predic-

tive mixing stands out from the other three as having

a slightly reduced luminosity. This behavior arises be-

cause the boundary of the hydrogen-burning convective

core is incorrectly positioned during the early MS evo-

lution, retarding the growth of the core (the same effect

can be seen for the 1.5 M� model in the upper panels of

Figure 2). During the subsequent CHeB phase, all four

tracks are similar until slightly after the luminosity min-

imum, when the helium-burning convective core starts

to grow; this growth is retarded in both cases without

predictive mixing, leading to reduced luminosities and

the shorter CHeB lifetimes seen in Figure 7. For the

cases with predictive mixing, there is no difference be-

tween the Schwarzschild and Ledoux, either on the MS

or after.

2.5. Evolution of the Bottom of the Surface Convective

Region in a Low-Mass Star

We now evolve a 1 M� star from ZAMS to TAMS, us-

ing the predictive mixing scheme to position the lower

boundary of the convective envelope. We include ele-
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Figure 9. The mass coordinate mbdy of the lower boundary
of the envelope convection region plotted as a function of
MS age, for the 1 M� stellar model discussed in Section 2.5.
Different line styles/colors show the separate runs described
in the text.

ment diffusion in these calculations; when it is excluded,

the composition remains completely uniform through-

out the stellar envelope, and predictive mixing makes

no difference whatsoever to the evolution. Figure 9

plots the mass coordinate of the convective boundary

as a function of MS age, showing results from separate

runs with and without predictive mixing, and using the

Schwarzschild and Ledoux criteria.

The four runs are in agreement until an age ≈ 6.5 Gyr;

after this point, the downward growth of the region

boundary is slower in the run that does not include

predictive mixing with the Ledoux criterion. Figure 10

plots the profiles of ∇rad, ∇ad, ∇L and X, in the outer

part of the 1 M� star at an age 8.40 Gyr. The left panel

illustrates the run with the Ledoux criterion plus pre-

dictive mixing, while the right panel shows the run with

the Ledoux criterion but without predictive mixing. The

former shows that ∇rad = ∇ad on the convective (up-

per) side of the convective boundary, while the latter

has ∇rad > ∇ad consistent with the boundary growth

being retarded.

2.6. Effect of Timesteps and Mesh Size

We now demonstrate how limiting the maximum

timestep δtmax (set by the max_years_for_timestep

control) and changing the mesh resolution parameter

∆ (set by the mesh_delta_coeff control; see Section

B.4 of Paper II for further details) influences the results

presented in the previous sections.

First we consider the effects of changing timestep and

resolution on the position of the convective envelope

boundary in the 1 M� model considered in Section 2.5,



14

0.95 0.96 0.97 0.98 0.99
m [M⊙]

0.3

0.4

0.5

0.6

0.7

0.8

X
,∇

ra
d,

∇
ad

,∇
L

Ledoux
Age = 8.40 Gyr, Xc = 0.0018

0.95 0.96 0.97 0.98 0.99
m [M⊙]

0.3

0.4

0.5

0.6

0.7

0.8

X
,∇

ra
d,

∇
ad

,∇
L

Ledoux, no predictive
Age = 8.40 Gyr, Xc = 0.0018

Figure 10. Profiles of ∇rad, ∇ad, ∇L, and X as a function of mass coordinate, in the outer envelope of the 1 M� stellar
model at an age 8.40 Gyr. The panels show the separate runs described in the text. Gray shading indicates regions undergoing
convection.
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Figure 11. The mass coordinate mbdy of the lower bound-
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line styles/colors show the separate runs with alternative
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focusing specifically on the case with the Ledoux crite-

rion and predictive mixing. The results presented pre-

viously in Figure 9 are calculated using δtmax = 5 Myr

and ∆ = 0.5. Figure 11 demonstrates that halving either

δtmax or ∆ has little effect on these results, confirming

that the calculations are converged. Such settings need

to be applied when a converged result is desired from

MESA for this calculation.

Figures 12 and 13 repeat this exercise for the posi-

tion of the core convection boundary in the 1.5 M� MS
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Figure 12. The mass coordinate mbdy of the convective-
core boundary plotted as a function of MS age, for the 1.5 M�
stellar model. Different line styles/colors show the separate
runs with alternative timestep (δtmax) and mesh resolution
(∆) choices. The choices adopted in Section 2.2 are marked
with an asterisk [*].

model and 1 M� CHeB model, respectively. The results

presented previously are clearly converged, and this ex-

ercise clarifies the MESA settings that should be used

for this calculation.

3. ELEMENT DIFFUSION

Section 9 of Paper III describes in detail the old im-

plementation of element diffusion in MESA. Section 9.3.4

points out limitations to those methods, namely: (1)

electron degeneracy was not properly accounted for in

the diffusion equations, and (2) strong Coulomb interac-

tion introduced theoretical uncertainties for the diffusion
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Figure 13. The mass coordinate mbdy of the convective-
core boundary plotted as a function of CHeB age, for the
1 M� stellar model. Different line styles/colors show the
separate runs with alternative timestep (δtmax) and mesh
resolution (∆) choices. The choices adopted in Section 2.4
are marked with an asterisk [*].

coefficients. These two issues are especially important

when modeling diffusion in WDs. Here we describe the

impact of degeneracy and present new methods to in-

corporate its effects. We also discuss recent updates to

diffusion coefficients and potential approaches for fur-

ther improvements.

3.1. Degeneracy and the Approach in Paper III

The approach to diffusion presented in Section 9 of

Paper III assumes all particles obey the ideal gas law.

Electron degeneracy pressure can significantly modify

the EOS and violate this assumption.

For a plasma species s (i.e., electrons and ions) with

partial pressure Ps, mass density ρs, charge density ρes,

number density ns, and temperature T , the Burgers

(1969) equations for diffusion are

dPs
dr

+ ρsg − ρesE =
∑

t 6=s
Kst(wt − ws)

+
∑

t 6=s
Kstzst

mtrs −msrt
ms +mt

,

(1)

5

2
nskB

dT

dr

=− 2

5
Kssz

′′
ssrs −

5

2

∑

t 6=s
Kstzst

mt

ms +mt
(wt − ws)

−
∑

t 6=s
Kst

[
3m2

s +m2
t z
′
st

(ms +mt)2
+

4

5

msmt

(ms +mt)2
z′′st

]
rs

+
∑

t 6=s
Kst

msmt

(ms +mt)2

(
3 + z′st −

4

5
z′′st

)
rt.

(2)

The resistance coefficients Kst, zst, z
′
st, and z′′st are de-

fined in Equation (86) of Paper III. With S representing

the total number of plasma species, we must solve for

2S+2 unknowns: S diffusion velocities (ws), S heat flow

vectors (rs), the electric field (E), and the gravitational

acceleration (g). The Burgers equations above for each

species provide 2S equations, so we can close the system

with two additional constraints, which are no net flow

of mass or electric current due to diffusion,
∑

s

ρsws = 0, (3)

∑

s

ρesws = 0 . (4)

This gives a total of 2S + 2 equations.

When electrons are degenerate, Equation (1) is dif-

ficult to apply since dPe/dr no longer takes a simple

analytic form. Moreover, the temperature term appear-

ing on the left hand side of Equation (2) clandestinely

assumes an ideal gas law. Burgers (1969) defines the

temperature for each species as Ts ≡ Ps/nskB and as-

sumes thermal equilibrium between all species so that

T ≡ Ts. The quantities Ps and ns are defined in terms of

moments of a Maxwellian distribution function, but the

Fermi-Dirac distribution function for electrons no longer
reduces to a Maxwellian form when they are degenerate,

and hence Te 6= Pe/nekB. If the electrons remain in ther-

mal equilibrium with their surroundings while failing to

satisfy an ideal-gas relation for their temperature, the

Burgers treatment assigns an incorrect temperature to

degenerate electrons for the dT/dr term in Equation (2).

Furthermore, the approach to diffusion described in

Paper III follows Thoul et al. (1994) in rearranging and

rescaling all equations into one matrix system with units

convenient for solving numerically,

P

K0

(
αi

d lnP

dr
+νi

d lnT

dr
+

S∑

j=1
j 6=e

γij
d lnCj

dr

)
=

2S+2∑

j=1

∆ijWj .

(5)

The sum on the left hand side skips the electron in-

dex because Ce ≡ 1 by construction, and so we save
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resources by not evaluating its gradient unnecessarily.

Here, indices i = 1, 2, . . . S encode the S equations given

by Equation (1), indices i = S + 1, S + 2, . . . , 2S encode

the S equations given by Equation (2), and indices

i = 2S + 1, 2S + 2 encode the 2 constraints of no cur-

rent or mass flux. For definitions of the various coeffi-

cients and matrices in Equation (5), consult Paper III

and Thoul et al. (1994). We repeat a few particularly

relevant definitions here. First, let Cs = ns/ne denote

the species concentration, where ne is the electron num-

ber density. Second, define the total concentration as

C =
∑
s Cs. Then the quantity αi appearing in Equa-

tion (5) above is defined as

αi =




Ci/C i = 1, 2, . . . S,

0 i = S + 1, . . . 2S + 2.
(6)

The term αi d lnP/dr in Equation (5) is meant to cap-

ture contributions of the driving terms dPs/dr in Equa-

tion (1). But this correspondence only holds if the ratio

of the partial pressure Ps for species s to the total pres-

sure P is given by

Ps
P

=
Cs
C

=
ns/ne∑
t nt/ne

=
ns
n
, (7)

where n is the total number density. This holds as long

as all pressures are ideal-gas. However, once electron de-

generacy modifies the equation of state, P does not scale

linearly with n, and so Equation (7) fails for all species in

the plasma. This means the αi term no longer accurately

represents the information in the Burgers equations for

the diffusion velocity of any species.

Moreover, the prefactor P/K0 in Equation (5) also

assumes ideal gas for each species. The quantity

K0 = 1.144× 10−40(T/107 K)−3/2n2
e simply scales out

some of the information common to all diffusion coeffi-

cients in the units used for Equation (5). Thoul et al.

(1994) assume an ideal gas to simplify the prefactor in

Equation (5) to

P

K0
= 2.00

(T/107 K)5/2

(ρ/100 g cm−3)

(∑

s

Cs

)(∑

s

AsCs

)
,

(8)

where As is the mass of species s in atomic mass units.

This scaling was propagated into the MESA diffusion rou-

tine described in Paper III. Since ideal gas pressure can

be significantly smaller than total pressure when elec-

trons are degenerate, this prefactor for Equation (5) is

systematically too small for degenerate plasmas. This

can result in diffusion velocities that are many orders of

magnitude smaller than obtained by a proper solution.
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Figure 14. The gravitational acceleration reported by
the diffusion routine described in Paper III compared with
gGauss = Gm/r2 for a 0.6 M� MESA WD model.

We can verify that there are problems in the degener-

ate regime by looking at the local gravitational accelera-

tion gdiff , which is solved for simultaneously with the dif-

fusion velocities in the diffusion routine described by Pa-

per III. MESA also reports the gravitational acceleration

independent of the diffusion routine, gGauss = Gm/r2.

For a MESA WD model, layers below the surface quickly

become degenerate, and the difference between gdiff and

gGauss is significant (Figure 14). This reflects the fact

that the solutions given by the diffusion routine scale

with a pressure that is far too small in the interior.

3.2. New Methods

We now describe new methods that have been intro-

duced to avoid the limitations discussed in Section 3.1.

3.2.1. Recasting the Burgers Equations

The problems with Equation (5) demonstrated in Fig-

ure 14 can be circumvented by solving the Burgers equa-

tions directly as presented in Equations (1) and (2).

When avoiding the rescaling of the Burgers equations

that was originally adopted from Thoul et al. (1994), no

limitations on the form of total pressure are present.

To that end, we recast the diffusion solver into the

form given in Appendix C. This form closely follows

the general approach presented by Thoul et al. (1994)

for arranging the full set of equations into a single ma-

trix equation, but enters the Burgers equations into that

matrix structure without rescaling any quantities. We

therefore avoid making any additional ideal-gas assump-

tions beyond those already present in the Burgers equa-

tions.
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3.2.2. Resolving the Degeneracy Problem

Electron degeneracy makes it difficult to evaluate the

term dPs/dr in Equation (1) in the case of electrons, but

it is possible to form a closed set of diffusion equations

that makes no explicit reference to this equation for the

electrons. Even in many applications involving WDs,

each ion species can be treated as approximately ideal,

and hence Equation (1) remains useful for ions. We are

then left with just two problematic equations out of the

system of 2S + 2 equations: Equations (1) and (2) for

the electrons.

For the S − 1 species of ions in the system, we can

write S − 1 Equations (1) in the form

nskBT
d lnT

dr
+ nskBT

d lnns
dr

+ nsAsmpg − nsZ̄sqeE

=
∑

t 6=s
Kst(wt − ws) +

∑

t 6=s
Kstzst

Atrs −Asrt
As +At

,

(9)

where Z̄s is the average charge of species s obtained

using Paquette et al. (1986b). Taking this together with

S Equations (2) and the two constraints on current and

mass flux, we have a total of 2S + 1 equations. If we

drop g as an unknown and treat it as a fixed input to

the diffusion routine in MESA using g = Gm/r2, we are

left with 2S + 1 unknowns. This gives a closed system

of diffusion equations with no explicit reference to the

problematic Equation (1) for electrons. This is the form

of diffusion equations described in Appendix C.

The thermal diffusion terms (those including dT/dr

in Equation 2) still contain ideal-gas assumptions as de-

scribed in Section 3.1. Fortunately, in WD cores where

strong electron degeneracy occurs, electron conduction
leads to efficient thermal transport, resulting in small

temperature gradients. With dT/dr � T/H, where

H = P/ρg is the local scale height, the heat flow vec-

tors (representing kinetic energy carried along a tem-

perature gradient by diffusing particles) become negli-

gible: rs � wt for all wt. Thus for WD interiors the

system of diffusion equations can be simplified by drop-

ping the S heat flow terms, removing the need for the S

Equations (2). Indeed, according to Iben & MacDonald

(1985) and Paquette et al. (1986b), thermal diffusion

leads only to small corrections to the diffusion velocities

for degenerate WD interiors.

Therefore, following Iben & MacDonald (1985), we

provide options for neglecting thermal diffusion in elec-

tron degenerate regions, setting rs = 0 and dropping

Equation (2) for each species. Equation (9) then sim-

plifies to the following S − 1 equations that no longer

depend on rs for the ions:

1

ns

∑

t

Kst(wt − ws) + Z̄sqeE

= Asmpg + kBT
d lnT

dr
+ kBT

d lnns
dr

,

(10)

which matches Equation (10) from Iben & MacDonald

(1985). Together with the 2 constraints, this leaves a

simplified set of S + 1 equations for S + 1 unknowns: S

diffusion velocities ws and the electric field E.

Thermal diffusion terms tend to enhance gravitational

settling velocities (Iben et al. 1992). This can be seen in

Figure 15 for a 1.25 M� star on the MS, where the solvers

that include thermal diffusion speed the sedimentation

of 16O away from the surface relative to the solver that

neglects thermal diffusion. MESA also provides options

for smoothly transitioning between diffusion velocities

obtained with and without thermal diffusion (averag-

ing between the two solutions in a blending region as a

function of electron degeneracy parameter). By default,

this transition region occurs when the electron chem-

ical potential is near µe ∼ kBT , but it is left to the

user to decide on an appropriate range of electron de-

generacy over which thermal diffusion should be shut

off, if at all. The effect of blending between solvers with

and without thermal diffusion is to suppress the thermal

enhancements to diffusion velocities, smoothly pushing

the enhancements to zero as electrons reach a degener-

acy threshold. The implementation for the simplified

set of diffusion Equations (10) and the smooth turn-off

of thermal diffusion terms as a function of degeneracy

are described in Appendix C.

In order to confirm that we recover the correct behav-

ior on the MS, we compare results obtained with differ-

ent diffusion routines for a 1.25 M� star in Figure 15.

Here the results based on Thoul et al. (1994) are valid,

since no significant departures from ideal-gas behavior

are present near the surface. The results obtained with

the new scheme are in agreement.

3.2.3. Diffusive Equilibrium

Paper II and Paper III show abundance profiles for

WDs that have reached diffusive equilibrium in their

outer layers. Figure 23 of Paper II compares the diffu-

sive tails of H and He to an analytic expression from Al-

thaus et al. (2003) and finds good agreement. However,

Althaus et al. (2003) note that their analytic expression

for diffusive equilibrium follows Arcoragi & Fontaine

(1980) in assuming an ideal gas, and the equilibrium

abundance profiles from their evolutionary models devi-

ate from the analytic expression due to the inclusion of

electron degeneracy. Similarly, the He layer of the WD
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Figure 15. Surface 16O mass fraction of a 1.25 M� star
over its MS lifetime. It first decreases as diffusion causes
sedimentation. Then it increases after the small surface con-
vection zone begins to grow, catching the receding 16O and
mixing it back toward the surface.

model shown in Figure 43 of Paper III is partially degen-

erate, and hence the driving forces for diffusion should

be modified in this region.

For a fully-ionized isothermal ideal gas the electric

field that serves as one of the driving forces for diffusion

in Equation (9) takes the form qeE = [A/(Z+1)]mpg. In

contrast, in the limit of strong electron degeneracy, the

electric field approaches qeE = (A/Z)mpg. When He

is the background material, the electric-to-gravitational

force ratio qeE/mpg increases from 4/3 to 2. In this

limit, any trace isotopes with A/Z = 2 see no net sed-

imentation force (ZqeE − Ampg = 0), while H with

A/Z = 1 sees a significant upward sedimentation force

(ZqeE−Ampg > 0). This extra buoyant force on H in a
degenerate He background pushes the diffusive tail fur-

ther toward the surface relative to the ideal-gas case, as

shown in Figure 16. With the proper handling of elec-

tron degeneracy described in Section 3.2, our MESA mod-

els now agree with the time-dependent diffusion models

shown in Figure 18 of Althaus et al. (2003).

3.2.4. Radiative Levitation

Radiative levitation is included as an optional extra

term. The Burgers equations are modified with a extra

forcing term by taking ρsg → ρs(g − grad,s), as shown

in Equation (99) of Paper III. Our implementation con-

tinues to follow Hu et al. (2011) but no longer employs

their matrix structure for the Burgers equations; details

of how the grad,s terms are handled with the updated

diffusion schemes can be found in Appendix C.
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Figure 16. Abundance profiles in 0.6 M� MESA WD mod-
els at Teff = 5, 000 K after evolving for 4 Gyr to approach
diffusive equilibrium in the outer layers. The old equations
assume an ideal gas; the new equations include the effects of
electron degeneracy.

3.3. Updated Diffusion Coefficients

The Paquette et al. (1986a) diffusion coefficients have

served as the standard for stellar diffusion problems.

The scattering cross-sections for these coefficients are

calculated using a screened Coulomb potential

V12(r) =
Z̄1Z̄2q

2
e

r
exp(−λ/r) , (11)

with the screening length chosen as λ = max(λD, āi),

where λD is the Debye length, āi = (3/4πni)
1/3 is the av-

erage interionic distance, and ni is the ion density. This

choice is a crude but effective way to handle the strongly

coupled regime; as shown in Paper III, this yields rea-

sonable agreement with diffusion coefficients calculated

from molecular dynamics.

Stanton & Murillo (2016) provide updated calcula-

tions of collision integrals for screened Coulomb inter-

actions and suggest improvements to the treatment of

screening length. They provide fitting functions and ta-

bles that can be used with any choice of screening length.

In MESA we follow their suggested screening prescription.

The electron screening length is given by a Thomas-
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Fermi approximation that accounts for non-relativistic

degeneracy:

λe =


 4πq2

ene√
(kBT )2 +

(
2
3EF

)2



−1/2

, (12)

where EF = ~2(3π2ne)2/3/2me is the electron Fermi en-

ergy. The direct inclusion of degeneracy increases λe.

The ion screening lengths are the Debye lengths for each

species,

λi =

(
4πZ̄2

i q
2
eni

kBT

)−1/2

. (13)

To prevent ions from screening below the inter-ionic

spacing, Stanton & Murillo (2016) introduce an approx-

imate ion-sphere for each species ai ≡ (3Z̄i/4πne)1/3,

and define an ion-sphere coupling parameter

Γi ≡
(Z̄iqe)2

aikBT
. (14)

Their net effective screening length is then

λeff ≡
[

1

λ2
e

+
∑

i

1

λ2
i

(
1

1 + 3Γi

)]−1/2

. (15)

This construction enforces a minimum on the screen-

ing length at approximately the ion-sphere radius ai for

each species, similar to the strict minimum at āi set by

Paquette et al. (1986a). Stanton & Murillo (2016) point

out that this adjustment to the ion screening length is

physically motivated by the ion pair distribution func-

tions in a strongly coupled plasma, where the occupa-

tion probability within the ion-sphere radius is negligi-

ble, and hence no ions are present to provide screening

beneath that cutoff. The proper handling of degener-

acy in the electron screening length makes it unneces-

sary to impose any particular minimum there, so there

is no longer any ad hoc appeal to a universal minimum

screening length.

For repulsive Coulomb potentials of the form in Equa-

tion (11), Stanton & Murillo (2016) provide fits and ta-

bles of collision integrals and coefficients that we now use

to calculate the resistance coefficients Kst for inclusion

in the Burgers equations in MESA. They do not provide

fits for attractive potentials, and Paquette et al. (1986a)

note that interactions with these potentials behave sig-

nificantly differently from those with repulsive potentials

when screened. Hence, MESA continues to use the Paque-

tte et al. (1986a) coefficients for electron-ion terms, and

adopts Stanton & Murillo (2016) for all ion-ion coeffi-

cients. In any case, it is evident from Equation (94) in

Paper III that the resistance coefficients approximately

follow Kst ∝ µ1/2
st , where µst is the reduced mass of par-

ticles s and t; so, electron-ion resistance coefficients are

generally negligible compared to the ion-ion terms.

The calculations of Paquette et al. (1986a) overesti-

mate the electron-ion resistance coefficients in the case

where electrons are degenerate. This is because diffu-

sion and resistance coefficients are generally calculated

assuming that the velocity distributions of all parti-

cles are Maxwellian, and the coefficients roughly scale

as Kst ∝ v−2
s v−2

t . When the electrons become degen-

erate, their characteristic kinetic energies are of order

EF � kBT , and so their velocity distribution skews to-

ward larger velocities. This results in smaller resistance

coefficients Kst, overestimating the impact of electron-

ion drag. However, the overestimate results in coeffi-

cients that remain negligible compared to ion-ion terms,

and no attempt is made to correct it in MESA.

For repulsive potentials, the coefficients from Stanton

& Murillo (2016) generally agree with those of Paque-

tte et al. (1986a) to within a few percent. In strongly

coupled WD interiors the Stanton & Murillo (2016) co-

efficients lead to ∼ 10% shorter diffusion timescales due

to a screening length that is allowed to be somewhat

smaller than the minimum value imposed by Paquette

et al. (1986a): λeff < āi. Future prospects for further

improvements to diffusion coefficients include the recent

progress on effective potential methods from Daligault

et al. (2016) and Shaffer et al. (2017).

3.4. Diffusion-Induced Flashes on He WDs

Diffusion-induced H shell flashes on low-mass (M .
0.4 M�) He WDs are known to alter their cooling times

(Althaus & Benvenuto 2000; Althaus et al. 2001) and

seismic properties (Althaus et al. 2013). Istrate et al.

(2016a,b) use MESA to model this process, generating
tables of cooling timescales and comparing MESA models

with those of Althaus et al. (2013).

Figure 17 shows an exploration of the H shell flash

domain for a large grid of Z = 0.02 MESA models over

a range of He-core and H-envelope masses. Here the

envelope mass is defined as the total mass of H-rich ma-

terial (X > 0.01) at the surface at the beginning of the

WD cooling track. Lines show the minimum envelope

masses for which H shell flashes occur given various dif-

fusion prescriptions.

For a given core mass, there is a range of envelope

masses that exhibit shell flashes only if diffusion is in-

cluded, but this range depends on the diffusion prescrip-

tion. The two lower lines for models including diffusion

in Figure 17 differ only in the handling of electron degen-

eracy in the diffusion scheme. This illustrates the impor-

tance of properly handling degeneracy as described in
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Figure 17. Minimum envelope mass Menv for which a H
shell flash occurs on a He WD core mass Mcore for Z = 0.02
MESA models with and without diffusion. The regime for
the phenomenon of diffusion-induced flashes lies between the
boundaries for models with and without diffusion.

Section 3.2, since the diffusion-induced flashes are typ-

ically ignited by CNO burning in the diffusive tail of

H that reaches into the partially degenerate He layers.

WDs in this mass range often experience cycles of many

H flashes, depleting H incrementally until insufficient H

remains to ignite another flash. The disagreement be-

tween diffusion prescriptions on the minimum envelope

mass for flashes is therefore significant, as this will de-

termine the total number of flashes and final H mass

that sets the ultimate cooling timescale for an object.

To explore the full range of parameters presented in

Figure 17, our WD models were built by artificially

stripping the H envelope down to a specific mass coordi-

nate above the He core of a 1.0 M� model ascending the

RGB. For a discussion of MESA models including proto-

WD formation and the resulting H envelope masses, see

Istrate et al. (2016b).

3.5. Heating from 22Ne Settling

In the strongly degenerate limit, qeE/mpg ≈ 2 for

C/O WD cores. For an isotope where A/Z 6= 2, the

electric and gravitational fields result in a net force that

drives diffusion. For 22Ne in cooling WD interiors, this

force is F = ZqeE − Ampg ≈ −2mpg, causing 22Ne

to sediment toward the center and deposit energy as

it moves deeper into the gravitational potential (Bild-

sten & Hall 2001; Deloye & Bildsten 2002; Garćıa-Berro

et al. 2008, 2010). This heating can prolong the WD

cooling timescale, especially at late times when the WD

is very dim and radiates away the energy slowly. This

effect may be especially important for explaining WD
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Figure 18. Extra cooling time required to reach a given
luminosity for 0.6 M� WD models including heating from
22Ne settling, relative to models neglecting this heating. For
comparison, we also show a result from Garćıa-Berro et al.
(2008) for a 0.6 M� WD with an Oxygen-dominated core
composition. Figure 57 shows the same quantity including
other physical processes such as crystallization for the same
Z = 0.02 WD model shown here.

luminosity functions in old and metal-rich open clusters

such as NGC 6791, where abundant 22Ne is available in

WD interiors to provide heating.

MESA now offers an option to include this heating term

in the energy equation (see Section 8.7) when diffusion is

enabled. The specific rate at which energy is deposited

is

ε22 =
|F |v22

(Amp)/X22
= (22mpg − 10qeE)

X22v22

22mp
. (16)

The 22Ne diffusion velocity (v22) and electric field are

calculated in the diffusion routine and then used to eval-

uate the above heating term. Note that the updates to

diffusion described in Section 3.2 are essential for cor-

rectly calculating both the diffusion velocity and mag-

nitude of the driving force in the degenerate interior of

the WD.

Figure 18 shows the delay in WD cooling from intro-

ducing ε22 into 0.6 M� models. These models turn off

diffusion for Γ > 175, so ε22 is only active in material

for which crystallization has not yet occurred. The time-

delays shown in Figure 18 are in good agreement with

those shown by Deloye & Bildsten (2002) and Garćıa-

Berro et al. (2008) for comparable cases.

4. IMPLICIT HYDRODYNAMICS

In Paper III we describe implicit shock-capturing hy-

drodynamics capabilities based on the use of an artificial

viscosity. We now add an option for using an approxi-

mate Riemann solver, the HLLC (Harten-Lax-van Leer-
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Contact) solver introduced by Toro et al. (1994). (See

also Batten et al. 1997 for an early implicit implemen-

tation of HLLC.) The HLLC method provides improved

shock capturing and energy conservation by avoiding the

need for artificial viscosity. However, the methods pre-

sented in Paper III are still included in MESA so that

users may continue to apply them.

4.1. Implementation of HLLC

Accurate shock-capturing methods evaluate the flux

of hydrodynamical conserved quantities by extrapolat-

ing the solution on each interface between zones over the

course of the timestep. The different methods for pro-

jecting the solution into the future are known as different

“Riemann solvers”. HLLC is designed to accurately cap-

ture the evolution of contact discontinuities. When im-

plemented on a Lagrangian grid, HLLC is able to evolve

purely advective flows without any contact smearing

(Cheng & Shu 2007; Duffell & MacFadyen 2011; Cheng

et al. 2012; Cheng & Shu 2014).

Paper I and Paper III discussed the evolution of a

velocity variable v, defined at cell faces. When using

HLLC, MESA instead evolves a cell-centered velocity u.

We solve a Riemann problem at the cell face with

index k. The cell to the left (toward the center) is the cell

with index k; the cell to the right (toward the surface)

is the cell with index k − 1. The cell face radius is rk.

The mass contained within an individual cell is dmk.

The mass enclosed from the center of the star to the

cell face is mk. For convenience, we define the face area

as Ak = 4πr2
k. Thermodynamic variables (e.g., Pk, ρk)

are defined at cell centers by mass. Figure 19 shows the

layout of cells.

cell k
ρ k Pk e k

u k c s,k

εnuc,k εν,thermal ,k εextra ,k

face k +1

face k

cell k+1

cell k-1

mk+1 ...

Pface,k uface,k

mk rk

LkAk

face k-1
ρk -1 Pk-1 ...

ρk +1 Pk+1 ...

mk-1 ...

dm k

dm k-1

dm k

toward center (or left)

toward surface (or right)

Figure 19. Cell and face variables relevant for hydrody-
namics in MESA when using HLLC.

The calculation begins by making estimates for the

density and velocity at the left and right of the face. Ex-

plicit codes sometimes use multipoint polynomial inter-

polation based on values in neighboring cells to improve

the reconstruction of the values at the face. However

for an implicit code such as MESA, that would introduce

dependencies in the partial derivatives for the Jacobian

that would violate the necessary block tridiagonal struc-

ture (see Appendix B in Paper II). To avoid this prob-

lem, we use the cell center density and velocity alone to

estimate the values at the edges of that cell. The vari-

ables for the left and right values are named relative to

the edge rather than the cell, that is

ρL = ρk ρR = ρk−1

uL = uk uR = uk−1 .
(17)

This choice limits the solution to be first-order accurate

in space.

Using an approach similar to Käppeli & Mishra

(2014), we reconstruct the pressure at the faces assum-

ing hydrostatic equilibrium. The pressure derivative

implied by hydrostatic equilibrium at the face is
(

dP

dm

)

hse

= −Gmk

Akr2
k

, (18)

and we reconstruct the pressure to the left and right of

the face

PL = Pk +
dmk

2

(
dP

dm

)

hse

,

PR = Pk−1 −
dmk−1

2

(
dP

dm

)

hse

.

(19)

This choice improves the timescale over which hydro-

static equilibrium can be maintained when using HLLC,

and facilitates the process of switching from a hydro-

static model to one in which a velocity variable is

evolved.

The 1D Lagrangian context makes the implementa-

tion of HLLC straightforward. In a Lagrangian code like

MESA there is no mass flux across cell faces. In hydro-

dynamics, there is no mass flux across a contact discon-

tinuity. HLLC includes the contact wave, so we simply

associate the contact wave with the cell face.1 As given

by Toro (2009), the HLLC estimate of the contact wave

speed is

S∗ =
uRρR(SR − uR) + uLρL(uL − SL) + (PL − PR)

ρR(SR − uR) + ρL(uL − SL)
,

(20)

1 In Section 5, where we consider the effects of mass diffusion,
we will need to slightly revise this association.
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and hence uface=S∗. Likewise, the pressure at the cell

face is the pressure at the contact wave, Pface=P∗, where

P∗ =
1

2
[(ρR(uR − SR)(uR − S∗) + PR)

+ (ρL(uL − SL)(uL − S∗) + PL)] ,
(21)

and SL and SR are the fastest wavespeeds moving to

the left and right, respectively. To evaluate these, we

assume the simple and most conservative bounds on the

signal velocities,

SL = min (uL − cs,L, uR − cs,R) ,

SR = max (uL + cs,L, uR + cs,R) ,
(22)

where cs,L and cs,R are the sound speeds on the left and

right sides of the cell boundary, respectively. Having

obtained values for uface and Pface, we now formulate the

versions of the equations used when HLLC is enabled.

In the Lagrangian picture, the cell boundaries move

with the fluid velocity, such that the net fluxes for mass,

momentum, and energy from cell k to cell k − 1 are

extremely simple (Cheng & Shu 2014) and given by

Fρ,k = 0 ,

Fp,k = AkPface,k ,

Fe,k = AkPface,kuface,k + Lk .

(23)

The Lk term in the energy flux does not come from the

solution of the Riemann problem, but from the fact that

MESA also evolves a luminosity variable that reflects the

radiative or convective transport of energy.

The finite volume form of the mass conservation equa-

tion remains the same as that given in Paper I,

ln rk =
1

3
ln

[
r3
k+1 +

3

4π

dmk

ρk

]
. (24)

However, the equation for the radius (Equation 29 in

Paper III) has changed. The new equation for the radius

is

rk = rstart,k + uface,kδt , (25)

where δt is the timestep. For numerical precision, we

re-write this as

exp (ln rk − ln rstart,k)− 1︸ ︷︷ ︸
expm

=
uface,kδt

rstart,k
, (26)

where this recasting allows use of crlibm (de Dinechin

et al. 2007, see also Paper III) function expm to eval-

uate the function exp(x) − 1 to machine precision (as

indicated by the underbrace).

The local radial momentum equation for cell k is

uk − ustart,k

δt
=− 1

2

(
Gmk

r2
k

+
Gmk+1

r2
k+1

)

+
Pk
dmk

(Ak −Ak+1)

+
1

dmk
(Fp,k+1 − Fp,k) .

(27)

On the right hand side, the first term is gravitational,

the second is a geometric source term that arises from

putting the equation in conservation-law form, and the

final term is the momentum flux in and out of the cell

found by HLLC.

The local total energy conservation equation for cell k

is

ek − estart,k +
1

2

(
u2
k − u2

start,k

)
−GmC

(
1

rC
− 1

rC,start

)
=

δt

[
1

dmk
(Fe,k+1 − Fe,k) + εnuc,k − εν,k + εextra,k

]
.

(28)

(See Section 8.3 for a discussion of how this energy ac-

counting is related to that typically used in stellar evo-

lution calculations.) We define the cell center quantities

mC and rC to be r and m at the center of mass of the

cell. The terms on the left split the local total energy

into internal, kinetic, and potential components. The

right side gives the energy in and out of the cell and the

energy sources and sinks in the cell. Energy loss from

neutrinos due to nuclear reactions is already subtracted

from the nuclear burning term, εnuc, so only the neutrino

energy loss rate from thermal processes, εν , is explicitly

accounted for in Equation (28). Other processes are ac-

counted for via εextra.

As in Paper I, the temperature differences of interior

cells Tk are set by energy transport across boundaries,

Tk−1 − Tk = dmk

[
∇T,k

(
dP

dm

)

hse

T k

P k

]
, (29)

where ∇T,k is provided by MESA module mlt (see Sec-

tion 5.1 in Paper I) and the overbars indicate quantities

at the cell faces (see Figure 19). This equation relates

temperatures of neighboring cells; the actual tempera-

ture in each cell is then fixed by a surface boundary

condition.

MESA’s HLLC includes the effects of rotation in the

shellular approximation (see Paper II, Section 6.1) and

can also include a post-Newtonian correction to the

gravitational force. (For an example application to

neutron star envelopes, see Paper III, Section 5.3).

These capabilities require modifications to the momen-

tum equation. In both cases, they can be treated as a
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rescaling of the local gravitational constant G → fG.

In the case of rotation, the rescaling factor is fP (Pa-

per II, Equation 23). In the post-Newtonian case, it is

(1− 2Gm/(rc2))−1/2. Therefore, when either of these is

used with the hydrodynamics capabilities described in

this section, the rescaling is applied to the G in pressure

reconstruction (Equation 18) and separately to each G

(for cell k and k+ 1) in the momentum equation (Equa-

tion 27).

4.2. Mesh Refinement

During a typical stellar evolution run, MESA controls

its meshing using “mesh functions” that limit the max-

imum allowed change of various quantities between ad-

jacent cells (see Section 6.5 in Paper I and Section B.4

in Paper II). With HLLC, the criteria to split or merge

cells are written solely in terms of the radial coordinate

in order to simplify the adjustments to the mesh in re-

sponse to large changes in density before and after a

shock. Cells split when they decompress enough that

their radial extent becomes too large, and they merge

with a neighbor when they compress enough that their

radial extent becomes too small.

The refinement criteria can use either linear (x=r) or

logarithmic (x=ln r) radius. The user selects a target

number of cells, Ntarget. MESA translates this into a tar-

get cell size, dxtarget=(xsurface − xcenter)/Ntarget. A cell

is considered too large if dxk/dxtarget > flong and a cell

is considered too small if dxtarget/dxk > fshort.
2 The

refinement then proceeds iteratively. At each iteration,

MESA selects the smallest and largest cells. If the largest

cell is too large, it is split. If the smallest cell is too

small, it is merged unless the magnitude of the differ-

ence between its velocity and that of either neighbor

is a significant fraction of the local sound speed: this

prevents merging in the immediate vicinity of the shock

where there are sharp jumps in velocity. The refinement

proceeds up to some maximum number of iterations,

though in practice the procedure typically stops before

then because no more cells satisfy the criteria to be split

or merged.

A cell merges with its smaller neighbor, unless they

have a different most-abundant chemical species, in

which case the cell merges with the other neighbor in-

stead. When a cell is split, differences in quantities

such as density and chemical abundances between the

two child cells are determined by interpolation from the

neighboring cells.

2 By default Ntarget = 1000, fshort = 4.0 and flong = 1.5, but
these parameters are configurable at run-time.

4.3. Time Resolution

Since the hydrodynamics equations are being solved

implicitly, MESA is not subject to the Courant-Friedrichs-

Lewy (CFL) timestep condition for numerical stability.

The size of the MESA timestep is instead limited by the

restrictions on the allowed changes in the structure of

the star. The usual timestep controls continue to apply.

While numerical stability does not require the restric-

tive CFL timestep condition, the choice of timestep does

affect the accuracy of the solution. A CFL-like limit is

often also applied because it can be a convenient ad-

ditional way to restrict timesteps along with the other

options. Such a restriction allows for well-converged so-

lutions. The timestep can be limited by the requirement

that

min

{
drk

|uk|+ cs,k

}
< ft × δt , (30)

where ft is a user parameter. Unlike in an explicit code

where a similar minimum must be evaluated over all

cells, in MESA the minimum is taken only over cells for

which

max{|uk − uk+1|, |uk − uk−1|}
cs,max

< fu , (31)

where cs,max is the maximum evaluated over nearby

cells, and fu is a user parameter.3 This means that only

regions near the shock front limit the timestep. The op-

tion for additional limitations on where this condition is

evaluated (e.g., in mass) are provided.

4.4. Hydrodynamic Test Problems

In order to test the HLLC implementation, compar-

isons are now made to problems with known solutions.

4.4.1. Sedov Blast Wave

In the Sedov blast wave problem, an energy Eblast is

deposited at the origin at time zero in a domain with

a non-uniform density profile ρ = ρ0r
−ω, where ρ0 and

ω are constants. We assume an ideal-gas EOS with a

constant adiabatic index γ, that is P = (γ − 1)ρe.

Generation of numerical Sedov solutions is discussed

in Kamm & Timmes (2007). A constant initial density

profile, ω=0, is frequently used in verification tests (e.g.,

Gehmeyr & Mihalas 1994; Fryxell et al. 2000). Although

a power-law initial density profile is more challenging for

verification studies, we explore such a profile because

density gradients are prevalent in astrophysics.

3 The value of ft is similar to the values of a CFL parameter in
an explicit code, while fu in the examples is typically a small value
like 10−2. The description of these limits is schematic and the
reader is referred to the source code for the precise implementation
details.
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Figure 20. Sedov blast wave density, pressure and velocity
profiles at the labeled times. The analytic (black) and MESA

(colored) curves show solutions for a shock propagating down
a ρ = ρ0r

−1 density profile with an adiabatic index γ=7/5.
Deviations from the analytic solutions are .2%.

To model a shock propagating down a linear den-

sity gradient in spherical geometry we set ω=1, γ=7/5,

ρ0=1 g cm−3, and P0=0 erg cm−3 in the analytic solu-

tion; while we set P0=10−6 erg cm−3 in MESA as a stable

numerical approximation to zero pressure. The initial

blast energy, Eblast=1.464 erg, is determined by choos-

ing that rshock=1 cm at t=1 s and then calculating the

Sedov energy integral. Figure 20 shows the evolution of

the density, pressure, and velocity. As the shock prop-

agates outward from the origin these quantities mono-

tonically decrease as mass is swept up by the shock.

The spherical Sedov problem admits a similarity solu-

tion. Figure 21 demonstrates that MESA maintains the

analytic self-similar profiles at different times.

4.4.2. Noh Problem

Noh (1987) describes a standard verification problem

that tests the ability to transform kinetic energy into in-

ternal energy, and the ability to follow supersonic flows.

A sphere of cold gas with an ideal-gas EOS and constant

adiabatic index γ, that is P = (γ − 1)ρe, is initialized
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Figure 21. Sedov blast wave self-similarity of the analytic
(black curves) and MESA (colored symbols) solutions. Scaled
velocity v/vshock, pressure P/Pshock, and density ρ/ρshock

profiles for a shock propagating down a ρ = ρ0r
−1 density

profile at the three different times are overlaid. Symbols for
each epoch mark cell locations. Deviations from the analytic
self-similar solutions are .2%.
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Figure 22. Analytic (colored solid) and MESA (black
dashed) solutions for the density, pressure, and velocity at
t=0.3 s in the Noh problem. Disagreements near the center
are due to wall-heating as discussed in the text.

with a uniform, radially inward speed of 1 cm s−1. A

shock forms at the origin and propagates outward as the

gas stagnates. For an initial gas density ρ0=1 g cm−3,

the analytic solution in spherical geometry for γ=5/3

predicts a density 64 g cm−3 in the stagnated gas.

Figure 22 shows the analytic and MESA profiles for the

density, pressure, and material speed at t=0.3 s. Most

implementations, including MESA’s, produce anomalous

“wall-heating” near the origin (although see Gehmeyr
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et al. 1997). As the shock forms at the origin the mo-

mentum equation tries to establish the correct pressure

level. However, numerical dissipation generates addi-

tional entropy. The density near the origin drops below

the correct value to compensate for the excess internal

energy (e.g., Noh 1987; Rider 2000). Thus, the density

profile is altered near the origin while the pressure profile

remains at the correct constant level in the post-shock

region.

Figure 22 shows the analytic solution and MESA solu-

tion for a fixed timestep of δt=5×10−6 s and 10,000 cells.

Deviations from the analytic solutions are .1%, except

for the density near the origin and the shock front. A

convergence exercise with different fixed timesteps and

spatial resolutions suggests spatial resolution is rela-

tively more important in the MESA solutions than tem-

poral resolution for the Noh problem.

4.4.3. Supernova Shock

The problem of a supernova (SN) shock moving

through a stellar envelope has been extensively stud-

ied. For a radiation-dominated strong shock, a simple

analytic expression for the shock velocity is provided by

Matzner & McKee (1999),

vsh = α

(
E

m−Mcenter

)1/2 [
m−Mcenter

ρr3

]0.19

, (32)

where we adopt α = 0.736 as suggested by Tan et al.

(2001). The explosion has an energy E. The mass that

enters into this expression is the mass entrained by the

shock and so differs from the Lagrangian mass coordi-

nate (m) by the mass of the remnant (Mcenter). Since

the material in the shocked envelope has an adiabatic

index of 4/3, the Matzner & McKee (1999) prediction

for the post-shock velocity is vMM = 6vsh/7.

MESA defines the shock location to be the outermost

point where the fluid Mach number exceeds 1, as mea-

sured in the rest frame of the star. Since the primary

application of these capabilities are blast waves propa-

gating into approximately static stellar envelopes, this

shock detection criterion suffices. Figure 23 compares

the velocity in a MESA model (the 19 M� model of

SN1999em; see Section 6) with vMM. We show explo-

sions with two different energies, E = 0.9× 1051 erg and

E = 2.7 × 1051 erg. Both cases have Mcenter = 1.5 M�.

Typical differences are at the few percent level.

4.4.4. Weak Shock Propagation

We now explore weak shocks with Mach numbers

M = 1.2 − 2.2 propagating outward in the hot stel-

lar envelope of a classical nova progenitor. The model

is a 0.8 M� WD. The H/He envelope extends from
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Figure 23. Comparison of MESA with the analytic results of
Matzner & McKee (1999) and Tan et al. (2001). This started
as a 19 M� model at ZAMS; at explosion it is 17.79 M� with
Mcenter = 1.5 M�. The upper panel shows an explosion with
E = 0.9×1051 erg; the lower panel shows E = 2.7×1051 erg.
The gray dashed curve shows the analytic prediction for the
post-shock fluid velocity given the density profile of the initial
model. The solid curves show velocity profiles from the MESA

calculation at specific times. The unfilled diamonds indicate
where on the dashed curve the two should be compared.

r = 7.1 × 108 cm to r = 7.85 × 108 cm with densities

ρ = 10− 100 g cm−3 and temperatures T ≈ 107 K.

After excising the core we run the model with HLLC

enabled for 100 s, corresponding to ≈ 50 sound crossing

times in the outer envelope, to allow the envelope to

settle. Afterwards, the envelope has a total energy of

−9.16× 1045 erg, with −9.38× 1045 erg in potential en-

ergy, 2.22× 1044 erg in thermal energy, and a negligible

kinetic energy 1.2× 1029 erg. We turn off convective en-

ergy transport to study the properties of weak shocks.

To create weak shocks, we inject 0.5% − 5% of the to-

tal thermal energy into a single cell with mass dm =

1.6 × 1025 g at r = 7.3475 × 108 cm over 10−4 s. Fig-
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Figure 24. Velocity at different times in the envelope after
6 × 1042 ergs has been injected. One shock front travels
upward and grows as it enters the outer atmosphere, and
another pulse travels downward and reflects off of the inner
boundary. The thin gray lines denote the region of study.

ure 24 shows the resulting upward and downward prop-

agating shocks. We restrict our region of study to the

region where the upward and downward shocks are well-

separated, in the radius range of r = 7.4−7.65×108 cm

(denoted with thin gray lines in Figure 24). We do not

study the properties of the downward shock and its ar-

tificial reflection from the “floor” of our model.

We define u0 = drpeak/dt as the shock velocity, where

rpeak is defined as the radial location with maximum

fluid velocity. We compare the properties of the shock to

analytic expectations for cases where γ is identical in the

pre- and post-shock material. Pre-shocked quantities

carry a 0 subscript, and shocked quantities carry a 1,

and we use the sound speeds, cs, and pressures, P , on

either side of the discontinuity. Following Zel’dovich &

Raizer (1967), in the rest frame of the shock front, the
pre-shock gas travels into the shock front at velocity

(
u0

cs,0

)2

=
(γ − 1) + (γ + 1)P1/P0

2γ
. (33)

The post-shock velocity u1 has magnitude |u1| = |u0 −
upeak|, where upeak denotes the fluid velocity u at rpeak.

The analytic expression is

(
u1

cs,1

)2

=
(γ − 1) + (γ + 1)P0/P1

2γ
. (34)

Local shocked quantities are evaluated at the cell with

the maximum Lagrangian fluid velocity, while pre-

shocked quantities are evaluated at the cell in the initial

MESA profile (before the shock has propagated) with the

same mass coordinate as the shock front when it reaches

rpeak. The thin black lines in the upper and lower panels
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Figure 25. Comparison of the MESA calculation (col-
ored lines) with analytic expressions (thin black lines) for
(u0/cs,0)2 (upper) and (u1/cs,1)2 (lower) for different ener-
gies injected.

of Figure 25 are the right-hand side of Equations (33)

and (34), respectively, for shocks produced by different

amounts of injected energy. Colored lines show the left-

hand side of each equation as calculated from the MESA

model.

We now compare the temperatures T0 and T1 of the

pre- and post-shock gas. We expect

T1

T0
=
P1

P0

[
(γ − 1)(P1/P0) + (γ + 1)

(γ − 1)(P1/P0) + (γ − 1)

]
. (35)

The thin black lines in the upper panel of Figure 26 show

the right hand side of Equation (36) and the solid colored

lines correspond to quantities calculated by MESA. The

colored dotted lines in the top plot show the temperature

change for an adiabatic compression,

(
T1

T0

)

S=const

=

(
P1

P0

)(1−1/γ)

, (36)

making it clear that for the weakest shocks, the temper-

ature jump is that expected from an adiabatic compres-

sion. However, for stronger shocks, the temperature is

higher due to the entropy increase associated with the

shock. For a gas with specific heat capacity cV , this

entropy jump is

S1 − S0 = cV ln

{
P1

P0

[
(γ − 1)(P1/P0) + (γ + 1)

(γ − 1)(P1/P0) + (γ − 1)

]γ}
,

(37)
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Figure 26. Comparison of the MESA calculation (colored
lines) to the expectations of shock theory (thin black lines)
for the temperature increase (upper) and entropy increase
(lower) for different energies injected. Colored dotted lines in
the upper plot indicate the temperature change for a purely
adiabatic compression.

shown by the thin black lines in the bottom plot of Fig-

ure 26. The colored lines correspond to quantities cal-

culated by MESA. The agreement is excellent for large

entropy jumps, but becomes noisy at lower injection en-

ergies because extracting small changes from the back-

ground is then challenging. For the weakest shock, the

entropy changes are orders of magnitude smaller than

the background entropy 1.2 − 1.6 × 109 erg g−1 K−1 in

the region of interest.

5. RAYLEIGH-TAYLOR INSTABILITIES

The outward moving shock in a core collapse SN

explosion encounters multiple composition boundaries.

Across these boundaries the density gradient is steep,

especially at the H/He boundary. Post-shock, these re-

gions become unstable to the Rayleigh-Taylor instabil-

ity (RTI). Early analytics and 2D simulations (Chevalier

1976; Chevalier & Klein 1978; Weaver & Woosley 1980;

Benz & Thielemann 1990; Herant & Benz 1991) and

modern 3D calculations (Hammer et al. 2010; Wong-

wathanarat et al. 2015; Utrobin et al. 2017) show signif-

icant impact on the density, velocity, and composition

structure of the ejecta.

It has been known for decades that the resulting com-

positional mixing can significantly alter the photometry

of the SN. This effect has been roughly included in 1D

modeling of Type IIP light curves resulting from explo-

sions deep within a red supergiant (Eastman & Pinto

1993; Utrobin 2007; Dessart & Hillier 2010, 2011). The

mass densities and energy densities are also smeared out

by the mixing from the RTI (see Bersten et al. 2011 for

an early discussion raising this concern). In their recent

modeling of the Type IIP SN 1999em, Utrobin et al.

(2017) capture the impact of the RTI using a 3D model

pre-breakout and connect to observable SN properties

with a 1D post-breakout radiation calculation.

To approximate the 3D effects of the RTI, we imple-

ment a scheme by Duffell (2016) that modifies the 1D

spherical hydrodynamics equations. This scheme has

been recently applied to the specific case of core col-

lapse SN by P. Duffell et al. (2017, in preparation) and

is now implemented in MESA for use along with the HLLC

scheme. In this section, we describe the MESA implemen-

tation and compare to 3D calculations of Wongwatha-

narat et al. (2015). The use of the resulting RTI-mixed

ejecta for SN lightcurves and velocities will be discussed

in Section 6.

5.1. Implementation of Duffell RTI

The Duffell (2016) scheme evolves an additional scalar

quantity αR representing the relative strength of turbu-

lent fluctuations.4 The evolution equation for αR is an

advection-diffusion equation with source terms. In Eu-

lerian form, this is

∂

∂t
(ραR) +

1

r2

∂

∂r

[
r2

(
ραRu− ηR

∂

∂r
(ραR)

)]

= S+
α + S−α ,

(38)

where

S+
α = (AR +BRαR)

√
max

(
0,−∂P

∂r

∂ρ

∂r

)
,

S−α = −DRαRρcsr−1 ,

ηR = CRαRcsr .

(39)

The source and sink terms S+
α and S−α represent growth

and decay of the turbulence, respectively. These terms

along with a diffusion coefficient ηR are determined via

scaling arguments. The dimensionless coefficients in

front of these quantities (growth coefficients AR, BR,

diffusion coefficient CR, and decay coefficient DR) are

determined by calibrating a suite of 1D models against

3D hydrodynamics simulations. The original model of

Duffell (2016) calibrates against 2D simulations; see

P. Duffell et al. (2017, in preparation), for the re-

calibration of these constants to 3D simulations. The

4 The quantity αR is denoted by κ in Duffell (2016) and
alpha RTI within MESA.
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values of the constants found by that 3D calibration are

AR = 10−3, BR = 2.5, CR = 0.2, and DR = 2.0. In

MESA, these constants are adjustable so that the user

may explore the effect of varying them. For example,

we show later the effect of DR = 2.0, 3.0, and 4.0 on

the mass fractions in massive star SN models at shock

breakout.

Additionally, a diffusive term (with diffusivity ηR) ap-

pears in each of the mass, momentum, and energy equa-

tions. For the sake of exploration in MESA, we allow each

diffusivity to be scaled by an independent factor. With

the diffusive term, the mass flux becomes (cf. Equation

23)

Fρ = Aρ(u− ṙ)−AηR
∂ρ

∂r
, (40)

and the choice u = ṙ (i.e., uface = S∗) no longer causes

this quantity to vanish. If no correction were applied,

MESA would no longer preserve the mass coordinates of

zone faces. In order to preserve the Lagrangian nature

of the equations, we allow for an additional velocity be-

tween the cell face and the fluid. The advective flux in-

troduced by the relative motion of the face will then ex-

actly cancel this diffusive flux, restoring the Lagrangian

nature of the scheme. Assuming ṙ = u+δu, the no mass

flux condition can be rewritten as

δu = ηR
1

ρ

∂ρ

∂r
= ηR

∂ρ

∂m

(
1

ρ

dm

dr

)
. (41)

The term in parentheses is equal to A. In the finite

volume form evolved by MESA, evaluating this condition

at the cell face gives

δu = A ηR
(ρL − ρR)

dm
. (42)

Therefore, we modify the HLLC equation uface = S∗ to

uface = S∗ + δu , (43)

and proceed as in Section 4.1 (see Equation 20 and sur-

rounding discussion). Usually |δu| � S∗, so in practice

this is a small modification and the HLLC scheme still

works well.

For a scalar quantity f , the flux is the sum of the

diffusive flux plus the advective flux (Aρfδu) created

by the velocity shift δu, that is

Ff = A ηR
∂ρ

∂r
f

︸ ︷︷ ︸
advective

−A ηR
∂(ρf)

∂r︸ ︷︷ ︸
diffusive

= −A ηRρ
∂f

∂r
. (44)

Rewriting the spatial derivative as a mass derivative

gives

Ff = −ηR(A ρ)2 ∂f

∂m
. (45)

To evaluate the fluxes for a cell k, we define

σR,k = ηR,k(Akρk)2 1

dmk

, (46)

where

ηR,k = CRαR,kcs,krk . (47)

The fluxes across faces are

Fρ,k = 0 ,

Fp,k = AkPface,k − σR,k(uk−1 − uk) ,

Fe,k = AkPface,kuface,k + Lk − σR,k(ek−1 − ek) .

(48)

The finite volume version of Equation (38) evolved by

MESA is

αR − αR,start =

δt

[
1

dmk
(Fα,k+1 − Fα,k)

+(AR +BRαR)

[
1

ρk

√
max

(
0,−∂P

∂r

∂ρ

∂r

)]

start

−DRαR,k
(

2cs,k
rk + rk+1

)

start

]
,

(49)

where

Fα,k = −σR,k(αR,k−1 − αR,k) . (50)

We evaluate the product of the P and ρ spatial deriva-

tives as

∂P

∂r

∂ρ

∂r
=

(
P k − P k−1

drk

)(
ρk − ρk−1

drk

)
, (51)

where

drk =
dmk

4πr2
Cρk

, (52)

which is numerically preferable to a subtraction of radial

coordinates. At sharp jumps in density and pressure,

these source terms can diverge, and therefore options

to smooth ∂P
∂r

∂ρ
∂r are available, though they are off by

default. In practice, smoothing does not appear to be

necessary in cases we have explored, as HLLC typically

smears out these sharp jumps over several cells in the

model at the shock, and RTI mixing then smooths out

the jumps more post-shock.

5.2. Comparing a Munich 3D Model to MESA with

Duffell RTI

We now develop a MESA analog to a specific 3D simu-

lation of Wongwathanarat et al. (2015). This provides a

comparison of the predictions from the MESA implemen-

tation of the RTI mixing described in the previous sub-

section (which we refer to as Duffell RTI) with those ob-

tained in a 3D simulation. The Wongwathanarat et al.
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(2015) progenitor model we use, L15-1-cw, has a mass of

15 M� based on Limongi et al. (2000). We refer to this

as the Munich L15 model. Note, as made clear in Wong-

wathanarat et al. (2015), most prior studies simulating

RTI in SN envelopes disregard early-time asymmetries,

relying on explosions that are initiated assuming spher-

ical symmetry. Since those explosion asymmetries ap-

pear to have significant consequences, it is important to

start from a 3D model like L15-1-cw when evaluating

the use of MESA for SNe.

To compare with the Munich L15 model, we construct

a MESA starting model with similar parameters. Future

studies of a variety of 3D models will be necessary to

assess the impact on our 1D results of a variety of 3D

asymmetries in the initial explosion. Just as Duffell RTI

allows 1D simulations to capture many of the effects of

the 3D RTI, it may be possible to extend 1D codes in

the future to include relevant effects of explosion asym-

metries in a self-consistent manner rather than by ex-

pediencies such as we describe below for initializing the
56Ni abundance.

We now compare the 3D shell averages of Wongwatha-

narat et al. (2015) to MESA with Duffell RTI enabled.

The left panel of Figure 27 shows the resulting abun-

dances when the shock is at 4.8 M�, with the thin lines

from MESA with DR = 3 and the thick lines the 3D av-

erages from the Munich L15 model. For H, He, and O,

the MESA lines agree with the Munich model. If nothing

is done to take into account the initial asymmetry of the

explosion, the radial extent of the 56Ni in the Munich

model far exceeds what can be achieved in MESA by Duf-

fell RTI mixing. Hence, at this moment in the model

evolution, we use the Munich L15 results to fix the ex-

tent of the MESA distribution of 56Ni. Later mixing in

the MESA run is done by Duffell RTI. The right panel of

Figure 27 shows the comparison with the Munich model

just before shock breakout. For this case, we show three

simulations with DR = 2, 3 and 4.

In Figure 28 we show the MESA profiles of density

(upper panel) and velocity (lower panel) at the mo-

ment when the shock is at 14.7 M�. The solid lines

are with Duffell RTI enabled, while the dotted lines are

with it turned off. As shown by Wongwathanarat et al.

(2015), Utrobin et al. (2017), and P. Duffell et al. (2017,

in preparation) the operation of the RTI removes the

unphysical density feature produced in 1D simulations

without it. Such features can be seen in Figures 2 of

Eastman et al. (1994) and Dessart & Hillier (2011) and

in the dotted black line in the upper panel of Figure 28.

Duffell RTI also alters the velocity structure of the ma-

terial near the H/He boundary, as we discuss more in

Section 6.6. The thick gray lines in both plots show the

1D shell averages of the 3D Munich L15 model. The

fainter gray lines show the density and velocity profiles

for a variety of angles in the Munich model. The asym-

metries of the shock in the Munich model lead to its

location varying between mass coordinates 10.5 M� and

14.5 M�. This variation with angle leads to 1D shell

averages that do not show a sharp shock feature, but

instead have more rounded shapes. Since the 1D MESA

results have the shock at a single mass coordinate, they

are similar to Munich profiles at a particular angle. This

difference must be considered when comparing results

from MESA to shell averages from the Munich model. It

also shows that the time of shock breakout, which is

well-defined in the 1D model, varies with angle in the

3D model.

6. LIGHT CURVES AND VELOCITY EVOLUTION

OF CORE COLLAPSE SUPERNOVAE

We now present MESA modeling of the ejecta evolu-

tion triggered by core collapse in massive stars (roughly

M > 8 M�). The new MESA capabilities enable self-

consistent calculations of photometric evolution of core

collapse supernovae (SNe) using the STELLA code (Blin-

nikov et al. 1998; Blinnikov & Sorokina 2004; Baklanov

et al. 2005; Blinnikov et al. 2006). A public version of

STELLA is now included with the MESA distribution, and

the interface from MESA to STELLA has been customized

for ease of use.5

Our main emphasis in this section is on the commonly

observed Type IIP “plateau” SNe that originate from

energy deposited deep in the core of a M ≈ 8 − 20 M�
red supergiant (Smartt 2009b). We also exhibit how

these new capabilities enable simulations of core collapse

events that occur after the star has lost the majority of

its outer hydrogen envelope, the Type IIb and Ib SNe.

The new capabilities we present are provided by a

powerful combination of MESA and STELLA. Post core

collapse evolution proceeds in two distinct phases. First

we use MESA to evolve models from a few seconds after

the central explosion triggered by core collapse to a time

just before the outgoing shock reaches the stellar surface.

These calculations make use of HLLC (Section 4) and

Duffell RTI (Section 5). Subsequently, we use STELLA to

evolve models through shock breakout and beyond the

end of the plateau, generating light curves and velocities

of the material at the photosphere and above.

Simulations using 3D models from the core collapse

event to shock breakout are computationally expensive

5 When using these capabilities one should cite this instrument
paper and the following papers describing STELLA (Blinnikov &
Sorokina 2004; Baklanov et al. 2005; Blinnikov et al. 2006).
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Figure 27. Comparison of abundances in MESA models (thin lines) with 3D shell averages from the Munich L15 model (thick
lines). This is a comparison of analogous models at similar times, so the goal is to illustrate qualitative agreement. Left panel:
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Figure 28. Comparison of density (upper panel) and ve-
locity (lower panel) profiles. The solid black line shows the
MESA model using the Duffell RTI capabilities documented
here with DR = 3; the dotted black line shows the same
model run without the effects of the RTI. The thick gray
lines show the 1D shell averages of the Munich model, while
the fainter gray lines show the Munich model densities and
velocities at different angles.

but now feasible (Wongwathanarat et al. 2015; Utrobin

et al. 2017), and it will be a significant contribution to

have more of them available in the future. To explore

the subsequent & 100 days of photometric and spectro-

scopic evolution, 1D approximations are common. The

new capabilities with MESA and STELLA also use a 1D

approximation for both the pre- and post-breakout evo-

lution. This provides a less computationally costly al-

ternative for initial exploration of the parameter space

for potential progenitors prior to or instead of doing a

more realistic but more computationally costly 3D sim-

ulation. The pair MESA and STELLA can produce useful

results in a few hours running on a modern multicore

desktop workstation (see Section 6.7), while the 3D pre-

breakout evolution and post-breakout spectral analysis

can take weeks running on a supercomputer. MESA and

STELLA are not a replacement for the more computation-

ally expensive codes but will be useful in conjunction
with them.

Throughout this section, we present models that we

characterize as “similar to” observed SNe. We list the

properties and parameters of these models in Table 3.

As we discuss in Section 6.8, where we describe the pro-

cedure by which these models were generated, they are

not “best-fit” models. Rather, they simply serve as il-

lustrative cases of these new capabilities.

6.1. From Core Collapse to Near Breakout with MESA

Models of massive stars can be evolved in MESA up to

the onset of the rapid infall of the iron core (see Paper I,

Paper II, Paper III). However, MESA cannot model the

core collapse event itself. Hence, to transition from the

onset of core infall to the explosion phase, we rely on a

a variety of approximate procedures (Paper III).
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For the current efforts, our approach is as follows. We

remove the center section of the model at the location

where the entropy per baryon is 4 kB, excising the por-

tion of the model that will have collapsed to form a

proto-neutron star. This corresponds approximately to

the iron core, typically at about 1.5 M�. We allow the

model to continue infall until its inner boundary (IB)

reaches 200 km, near the location of the stalled shock

(thanks to H.-T. Janka, private communication, for sug-

gesting this scheme). After the first few seconds, we ac-

count for further fallback by removing negative velocity

material at the IB. We are not seeking a numerical model

of realistic fallback since that depends on 3D details of

the explosion that are beyond what MESA can simulate.

The stellar explosion is induced by injecting energy in

a thin layer of approximately 0.01 M� at the IB for 5 ms,

at a rate sufficient to raise the total energy of the model

to a user-specified value. In the subsequent evolution,

nuclear reactions are allowed to change abundances but

not to generate energy. This choice is suitable because

we are not seeking accurate nucleosynthetic yields. The

explosion energy spent to photodisintegrate the core to a

mix of protons, neutrons, and alpha particles is soon af-

ter roughly repaid by energy released as those particles

recombine to form products such as 56Ni. Getting an

accurate accounting of the energy balance of that com-

plex process is beyond the scope of this paper and is

not attempted in the following examples. Our choice to

exclude nuclear energy generation can be seen as a sim-

plifying assumption that the cost of photodisintegration

is balanced by the return from later recombination. For

users wishing to refine this, any excess change in energy

from nuclear reactions can be included in the specifica-

tion of the post-explosion total energy of the model.

The conservation of total energy throughout the run

is estimated by summing the per-step errors from post-

explosion to near breakout. At each timestep, we com-

pare the actual change in total energy between initial

and final models for the step, to the change expected

from surface luminosity and neutrino losses over the du-

ration of the step. The runs for the models reported be-

low typically show relative cumulative errors in conser-

vation of total energy of less than 1%, with most of that

error happening in the first few minutes post explosion

when the shock is most extreme. For later stages, the

cumulative relative error is orders of magnitude smaller.

The post-explosion evolution of the MESA model is de-

termined by the shock traversal through the star and

the resulting Duffell RTI. Figure 29 illustrates the differ-

ence between models with and without the effects of the

RTI by showing density and pressure profiles. They are

shown when the forward shock is about halfway through

the star and when the reverse shock originating at the

H/He boundary has reached ≈ 4 M� on its way to the

center. The reverse shock is primarily responsible for

the large RTI effects evident in the plots. The online

animated figure shows the time evolution of these and

many other quantities of interest from seconds after ex-

plosion to near shock breakout.

6.2. From Near Breakout through the Plateau:

Introducing STELLA

To follow the evolution of the model through shock

breakout and beyond we use a multigroup (i.e., frequency-

dependent) radiation hydrodynamics code.6 When the

shock is near breakout, we hand the MESA model off

to STELLA in an appropriate form which involves in-

terpolating to the desired grid and optionally adding

circumstellar material (CSM) according to user specifi-

cations. With that done, MESA is finished, and STELLA

takes over (see Section 6.3 for a discussion of how we

select when to hand off).

STELLA (Blinnikov et al. 1998; Blinnikov & Sorokina

2004; Baklanov et al. 2005; Blinnikov et al. 2006) is able

to model SN evolution at early times, before the ex-

pansion is homologous. It can also handle shock break-

out and interaction with circumstellar material outside

the conventional stellar photosphere. STELLA is an im-

plicitly differenced hydrodynamics code that incorpo-

rates multigroup radiative transfer. The time-dependent

equations are solved implicitly for the angular moments

of intensity averaged over fixed frequency bands. STELLA

takes about the same amount of time for near-breakout

to post-plateau evolution as MESA takes to simulate from

explosion to near-breakout: about an hour on current

workstations.

STELLA solves the radiative transfer equations in the

intensity momentum approximation in each frequency

bin. We use from 40 to 200 frequency groups, enough to

produce bolometric luminosities and broad-band colors,

but not sufficient to produce spectra. Better broad-band

light curves can be produced with the larger number of

frequency groups, but 40 is sufficient for a bolometric

lightcurve and gives faster runtimes since each group

must be represented by a variable and an equation at

each zone. The opacity is computed based on over

153,000 spectral lines from Kurucz & Bell (1995) and

Verner et al. (1996). The expansion opacity formalism

from Eastman & Pinto (1993) is used for line opacities

taking high velocity gradients into account. The opac-

6 MESA can be run through shock breakout and beyond, but we
do not view gray opacity lightcurves as sufficient for quantitative
comparisons to observed SNe.
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Figure 29. Density (left y-axis, orange curves) and pressure (right y-axis, blue curves) for MESA models with Duffell RTI (left
panel) and without any RTI effects (right panel) at a time when the forward shock is approximately halfway through the star.
The online animated Figure shows the time evolution of these and other quantities for each case.

ity also includes photoionization, free-free absorption,

and electron scattering. LTE is assumed in the plasma,

which allows the use of the Boltzmann-Saha distribution

for ionization and level populations. STELLA does not in-

clude a nuclear reaction network except for the radioac-

tive decay chain initiated from 56Ni. For calculating the

overall opacity, the code uses 16 species: H, He, C, N,

O, Ne, Na, Mg, Al, Si, S, Ar, Ca, a sum of stable Fe and

radioactive 56Co, and stable Ni and radioactive 56Ni.

Energy from nickel and cobalt radioactive decay is de-

posited as positrons and gamma-rays and is treated in a

one-group transport approximation according to Swartz

et al. (1995).

STELLA solves the conservation equations for mass,

momentum, and total energy on a Lagrangian comoving

grid. It employs artificial viscosity based on the stan-

dard von Neumann artificial viscous pressure used for

stabilizing solutions (Von Neumann & Richtmyer 1950)
and a cold artificial viscosity used to smear shocks (Blin-

nikov et al. 1998; Moriya et al. 2013). The coupled equa-

tions of radiation hydrodynamics are solved through an

implicit high-order predictor-corrector procedure based

on the methods of Gear (1971) and Brayton et al. (1972);

see Blinnikov & Panov (1996) and Stabrowski (1997) for

details.

We explore the sensitivity of bolometric light curves

(Lbol) reported by STELLA to the number of frequency

bins, spatial zoning, and error tolerances. The result

of our sensitivity study is that 40 frequency bins, 300

spatial zones, and an error tolerance 0.001 for the Gear-

Brayton method typically give a converged model. In

our experience using MESA and STELLA for Type IIP SNe,

we have not found cases that require different values

for number of frequency bins and error tolerance. Some

cases may need a larger number of zones in order to min-

imize numerical artifacts producing spurious oscillations

in the light curve. This problem can often be fixed by a

relatively small increase in the number of zones; this is

shown for a case similar to SN 2012A in Figure 30.
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Figure 30. Effect of number of STELLA zones on a model
(12A) similar to SN 2012A. The inset zooms in on the region
of the plateau that exhibits numerical oscillations. A small
increase in the number of zones significantly reduces this
artifact and doubling the number of zones almost completely
removes it.

6.3. Handing Off from MESA to STELLA

A time must be chosen to hand off the MESA model

to STELLA. This choice is driven by a compromise be-

tween two considerations. First, RTI modeling ceases

once STELLA is running even though the effects of RTI

may not be complete at that time. Therefore, one wants

http://mesa.sourceforge.net/mesa4.html
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Figure 31. Bolometric lightcurves for Type IIP SNe ob-
tained where the transition between MESA and STELLA has
been done at different times relative to shock breakout. Per-
forming the handoff just before breakout (blue curve, day 0)
is the recommended choice.

the model to remain in MESA as long as possible. But

second, STELLA more accurately handles shock break-

out and the outermost layers, especially if any matter is

placed above the photosphere or if significant radiation

is free-streaming from just below the photosphere prior

to shock breakout. Moreover, the sophisticated multi-

group radiation transfer of STELLA will do a much better

job than (gray) MESA can at later times post breakout.

Hence for longer-term lightcurve evolution, this moti-

vates the default choice to perform this handoff just be-

fore breakout.

In order to illustrate the effects of this choice, Fig-

ure 31 shows bolometric light curves for cases where

the handoffs are done at different times. Note that this

plot shows MESA being forced to run post-breakout even

though that is not recommended. The deviation of the

light curves for later handoff are primarily the result of

STELLA doing a better job because of its multigroup radi-

ation transfer rather than any late-stage RTI effects be-

ing captured by MESA that are missed by STELLA. That

is because, for this case, the H envelope is of normal

thickness and the reverse shock from the H/He bound-

ary has time to reach the center, completing essentially

all of the RTI effects before breakout.

In the runs presented in the remainder of this sec-

tion, we choose to do the MESA-to-STELLA handoff shortly

before breakout, as determined by the outgoing shock

front reaching a location 0.11 M� below the surface of

the model (this location is a user-defined parameter).

Again, we note that in some cases the reverse shock is

still far from the center at this moment, and not all of

the RTI mixing has completed. In particular, this is true

for models with a partially stripped envelope (see Sec-

tion 6.9). For now, this remains a caveat for the user;

a solution would be to have the post-breakout radiation

hydrodynamics code include a treatment of the effects

of RTI. When presenting the results, we define t = 0 as

the time of shock breakout—which we identify using the

peak of the bolometric luminosity—and not the (earlier)

time of the MESA-to-STELLA handoff.

Because of STELLA’s treatment of radiation hydrody-

namics, we have not had to take the progress of the

model toward homologous expansion into consideration

in selecting a time to hand off from MESA. However this

is a consideration for doing a handoff to radiative trans-

fer codes that assume homology. More accurate spec-

tral and lightcurve modeling with full radiative trans-

fer, such as EDDINGTON (Eastman & Pinto 1993), SEDONA

(Kasen et al. 2006), and CMFGEN (Dessart & Hillier 2010),

assume homologous expansion in their current applica-

tions to SNe, and this should be considered when decid-

ing the time to hand off from another simulation. In-

deed, Eastman et al. (1994) and Dessart & Hillier (2011)

discuss this challenge, especially for the inner-most ma-

terial that has not reached a homologous stage and can

still have a reverse shock running through it. Approx-

imations made in mapping to a thereafter homologous

code can impact the late-time photospheric velocity evo-

lution and the nebular line width predictions associated

with the innermost ejecta.

In contrast, STELLA does not assume homologous ex-

pansion, so early handoffs are fine; it can handle the ef-

fects of remaining pressure gradients as the model moves

toward homologous expansion. This is important, as the

time it takes to reach homology in these models can be

quite long. Figure 32 shows velocity evolution results

for a model similar to SN 1999em (see discussion in Sec-
tion 6.8). Homologous expansion would imply that v/r

is flat, whereas a 20% variation from simple homology is

evident at 20 days. An additional way in which homol-

ogy can be violated long after shock breakout is from
56Ni decay, especially in Type Ia SNe (Woosley et al.

2007b). As is evident in Figure 32, the much smaller

mass fractions of 56Ni in Type IIP SNe do not cause

such a problem. The contrasting light curves with and

without 56Ni are shown in Figure 33, exhibiting the pro-

longing of the plateau due to radioactive decay (Kasen

& Woosley 2009; Sukhbold et al. 2016a).

6.4. Connecting to Observations: Photospheric

Properties from STELLA

To set the stage for the rest of this section, we de-

scribe a particular model in detail. Figure 34 shows the
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Figure 32. Profile of v/r throughout the model, normalized
to the values at the surface, at a number of epochs. In homol-
ogous expansion, the profiles would be constant and equal to
unity. The models are still significantly non-homologous at
20 days. The bottom panel shows the 56Ni mass fraction for
this model at MESA-to-STELLA handoff (near shock breakout).
The extended 56Ni profile (total nickel mass ≈ 0.04 M�) in-
dicates that it has been mixed by RTI effects out to near the
surface. However, as illustrated by the dotted lines in the
upper panel, the decay energy does not have a significant
effect on the approach to homology.

evolution of a model we construct to be similar to the

Type IIP SN 1999em (99em 19 in Table 3). The quanti-

ties shown are those generated during the STELLA phase

of the evolution. Panel (a) is the bolometric luminosity,

while panel (b) shows velocity at the location of the pho-

tosphere (where τRos = 2/3) and panels (c) and (d) show

the mass and radius coordinate of this location. This il-

lustrates the familiar result that the photosphere only

reaches the deeper parts of the ejecta after about day 50.

The radiation and gas temperatures at the photosphere

are shown in panel (e), as is an effective temperature

defined by the bolometric luminosity leaving the pho-

tosphere. Panel (f) shows the optical depth to the IB,

highlighting that the radiative diffusion approximation

is excellent (since τIB � 1) until day 120, at which point

the plateau ends and the IB temperature (panel g) ap-

proaches that of the photosphere. (Curves showing pho-

tospheric quantities stop once τIB < 3.) Meanwhile, the

photospheric radius (panel d) stays remarkably constant

throughout the plateau.

Our emphasis is on bolometric luminosities, where 40

STELLA frequency bins is adequate. However, broad-
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Figure 33. Lightcurves and velocities for a model similar
to SN 1999em with ≈ 0.04 M�

56Ni and without 56Ni. The
main effect of the radioactive decay is to prolong the plateau.

band light curves are also reported by STELLA. Figure 35

shows how the STELLA colors change as one goes from 40

to 200 frequency bins in a model approximately match-

ing the bolometric luminosity of SN 1999em (99em 19

in Table 3). This reflects that a given band is spanned

by only a small number of frequency bins. The non-

public research version of STELLA can opt to use many

more frequency bins to address under-resolution issues.

There are no current plans to include that capability

in MESA. We also show what a blackbody would predict

using the MESA colors module (see Appendix A). This

makes it clear that the line-blanketing in the U band
is well handled by STELLA. We do not include colors in

our subsequent discussions, but we expect they may be

useful to users who have access to observations in one or

two bands, but not enough data to produce a bolometric

light curve from observations.

6.5. Connecting to Observations: Fe II Line Velocities

It is important to be able to interpret the ejecta ve-

locities measured by observers, which are often inferred

from the absorption minimum in the Fe II 5169 Å line.

Modeling these absorption features requires more de-

tailed radiative transfer than available in STELLA. How-

ever, rather than assume the photospheric velocity re-

ported by STELLA is identical to the Fe II 5169 Å line, we

have added the capability of finding the location (and

hence the velocity) of material above the photosphere

where the Sobolev optical depth in the Fe II 5169 Å line
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Figure 34. Photosphere and IB properties of a model
(99em 19 in Table 3), similar to the Type IIP SN 1999em, as
a function of time. From top-to-bottom, the figure shows the
bolometric luminosity, the velocity, mass coordinate, and ra-
dius coordinate of the photosphere, three temperatures (gas,
radiation, and “effective”) at the photosphere, the optical
depth to the IB, and the IB temperature. The gray line in
panel (c) shows the Lagrangian mass coordinate of the IB.

is a specified value.7 This will prove to be most im-

portant after day 30 or so, when the photosphere has

started to move inward in mass coordinate into ejecta

with a shallow density profile.

The strength of a line in a homologously expanding

atmosphere is quantified by the Sobolev optical depth

(Sobolev 1960; Castor 1970; Mihalas 1978; Kasen et al.

7 This approach arose through the efforts of Dan Kasen, who
also provided important data needed to complete the calculation.

0 50 100 150

Time [days]

−20

−15

−10

−5

A
b

so
lu

te
m

ag
n

it
u

d
e

U+3
B+1
V
R-1
I-2

STELLA (40 bins)

STELLA (200 bins)

colors (blackbody)

Figure 35. Comparison of model 99em 19 with the multi-
color lightcurve of SN 1999em, showing colors from STELLA

and blackbody colors from MESA. Circles indicate observa-
tional data. This demonstrates the effect of the number of
STELLA frequency bins on the predicted colors.

2006), which for the Fe II line at any position is

τSob =
πq2

e

mec
nFeηiftexpλ0, (53)

where λ0 = 5169 Å is the line center wavelength for the

Fe II line, f = 0.023 is its oscillator strength, nFe is the

number density of iron atoms, and texp is the time since

breakout. The quantity ηi is the fraction of iron atoms

that are in the lower level of the transition of interest

and depends on the properties of the gas. D. Kasen

(2017, private communication) provided an ηi(ρ, T ) ta-

ble for post-processing to produce the Fe II line veloci-

ties, calculated under the assumption of LTE and cov-

ering log(ρ/g cm−3) = −16 to −8 and log(T/K) = 3.3

to 4.3.

We use Equation (53) after the STELLA run to provide

the velocity of material that satisfies a chosen value of

τSob. This yields a velocity that can be compared to

the measured Fe II line velocities. Figure 36 shows the

resulting comparisons for various choices of τSob for a

model similar to the Type IIP SN 2012A found solely

by matching the bolometric luminosity (upper panel).

The lower panel displays the Fe II 5169 Å data and

the velocities derived from the photosphere and for a

range of values of τSob. At early times, there is little

difference between the photospheric velocity and that

of the Fe line. However, as the photosphere moves

deeper into the ejecta, the two velocities substantially

diverge. The velocity inferred from the Sobolev argu-

ment gives a much better match to observations than

the photospheric velocity. Motivated by this compari-
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son, we choose τSob = 1 for our later plots, a parameter

that the user is free to adjust.
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Figure 36. Comparison of different definitions of velocity
for a model (12A) similar to SN 2012A. The upper panel
shows the data and the model for the bolometric luminosity.
The lower panel shows the velocity of a few different locations
depending on the Sobolev optical depth in the Fe II line.

6.6. The Impact of Pre-breakout RTI Mixing

We have previously outlined the inclusion of a method

for RTI mixing in MESA (the Duffell scheme; Section 5),

the use of MESA to evolve models pre-breakout (Sec-

tion 6.1), the use of STELLA to evolve models post-

breakout (Section 6.2) and described how to connect the

models to observations (Sections 6.4 and 6.5).

In this way, MESA plus STELLA allows users to explore

the impact of RTI mixing on Type IIP light curves and

velocities. Prior work in this direction (Eastman et al.

1994; Utrobin 2007; Dessart & Hillier 2010, 2011; Moro-

zova et al. 2015) focused on the impact of compositional

mixing, often with averaging approaches to achieve var-

ious levels of mixing. Only the recent work of Utrobin

et al. (2017) incorporated compositional mixing from a

3D model and also included the modified density and ve-

locity structures, also seen in the 1D RTI mixing (P. Duf-

fell et al. 2017, in preparation).

Figure 37 shows the lightcurve and velocities of model

99em 19. The luminosity without RTI mixing has a dis-

tinctive rise just before the plateau as shown by East-

man et al. (1994) and Utrobin (2007). As RTI causes

many associated changes in composition, density, veloc-

ity, and energy density for the innermost material, we

cannot specifically identify the immediate cause of the

lengthening of the plateau phase when RTI is incorpo-

rated without further experiments. These are now pos-

sible using MESA and STELLA but are beyond the scope of

this paper. The lower panel shows the photospheric and

Fe II line velocities with and without RTI mixing. The

most evident change is at the end of the plateau, when

the material that was near the H/He boundary in the

red supergiant is approaching the SN photosphere. That

material is strongly affected by RTI mixing as shown in

Figure 28 and discussed in P. Duffell et al. (2017, in

preparation).
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(99em 19) similar to SN 1999em. The inset shows the time
near day 120 where the altered density structure causes a
significant difference in the Fe II line velocities.

To enable exploration of the impact of various com-

ponents of the RTI mixing, we explicitly allow for the

diffusion coefficients for density, momentum, energy, and

composition to be scaled by independent constant fac-

tors relative to the value ηR given in Equation (47). We

show in Figure 38 the impact of varying the coefficient

in the internal energy flux in Equation (48), which we

refer to as ηR,e. These plots show the energy density

and density of the ejecta just before shock breakout in

one of our models (99em 19) in Table 3). The blue line
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Figure 38. Structural effect of the RTI energy diffusion
coefficient ηR,e. Other parameters are the same as model
99em 19. The profiles are shown just before shock breakout.
The effects on the lightcurve are shown in Figure 40.

is for the fiducial value, whereas the red line is for an

extreme increase of a factor of 100. The only locations

that are sensitive to these changes are the innermost

mass coordinates where RTI was most active, the same

regions where the lightcurve and velocities seem to be

sensitive to changes related to RTI mixing. The vari-

able ηR,e was found to be a useful “knob” to vary for

modeling of specific SNe.

6.7. Exploring the Explosive Landscape

A strength of the new MESA plus STELLA capabilities

is their ease of use. This enables detailed quantitative

studies of large numbers of core collapse SNe. The open

source nature of MESA, the inclusion of STELLA in the

MESA distribution, and the repository of examples con-

tained within the MESAstar test suite allow a user to

obtain models that can be compared directly to observa-

tions. Indeed, with minimal manual intervention, a user

can take a star from the pre-MS to a SN light curve

within a few hours of computer runtime. To empha-

size this point, we describe here how this might be done

(Section 6.7.1). To demonstrate how parameter choices

affect lightcurves, we show a large sample of variations of

a standard case for “high-middle-low” settings of some

of the main parameters (Section 6.7.2). In Section 6.8 we

will exhibit a few specific models created to be roughly

similar to known Type IIP SNe. The potential is clear

for an extensive database of such SNe models created
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Figure 39. Effect of single-parameter variations to the pro-
genitor std 16. The upper three panels vary initial properties
of the star; the lower three vary modeling assumptions dur-
ing evolution to core-collapse.
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with the SN explosion. Unvaried parameters have the values
of the model listed in the upper right of that panel.

using MESA and STELLA; its actualization is beyond the

scope of this paper.

6.7.1. Generating Models with MESA plus STELLA

The first step in generating a core collapse SN

lightcurve is to use MESA to make a pre-SN stellar

model that is undergoing core collapse. The test case

example make pre ccsn can serve as a useful template.

As part of the required inlists, the user must select val-

ues for the main variables: initial mass (MZAMS), initial

metallicity (Z), initial rotation ((v/vc)ZAMS), overshoot-

ing parameter (fov), wind scaling factor (ηwind), and the

mixing length for MLT in the H envelope (αMLT,H). Of

course, the user may tune other MESA parameters of

interest. The run from pre-MS to Fe core infall runs

automatically given these parameters and, depending

on the case, takes roughly an hour on a modern multi-

core desktop workstation. Users interested in details of

pre-SN models may require settings that lead to signifi-

cant additional runtime (e.g., Farmer et al. 2016; Renzo

et al. 2017).

The second step loads the model at core infall into

MESA, emulates the core collapse explosion by excising

the core and injecting energy and Ni (as described in

Section 6.1) and evolves until near shock breakout. The

test case example ccsn IIp can serve as a useful tem-

plate. Again, the user must set the value of the various

“knobs” controlling the properties of the explosion such

as the total energy E and the 56Ni mass MNi. Early

(t < 20 days) lightcurves of core collapse SNe are better

fit when large amounts of CSM are placed outside the

conventional photosphere (Morozova et al. 2016; Dessart

et al. 2017; Morozova et al. 2017a,b). We provide an

option to include CSM. We also provide the option for

“boxcar” smoothing of the model abundances before the

handoff from MESA to STELLA (Kasen & Woosley 2009;

Dessart et al. 2013; Morozova et al. 2015). The end re-

sult of this step is a model suitable for input into STELLA,

so one must also indicate the number of STELLA zones to

be used. This MESA phase from after explosion to near

breakout typically takes about 30 minutes on a modern

multicore desktop workstation.

The final step uses the results produced in the previous

step as input to STELLA and evolves the model through

shock break-out to the post-plateau phase. A script to

execute STELLA is provided. This stage takes about an

additional 30 minutes on a modern multicore desktop

workstation for typical cases. When STELLA finishes, a

post-processing step produces data for comparison to

observational results.

6.7.2. Sensitivity to Variations in Key Parameters
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Figure 39 exhibits the std 16 model lightcurves as pro-

genitor parameters are varied. Many variations behave

as expected from previous analytical and numerical scal-

ings (Popov 1993; Kasen & Woosley 2009; Sukhbold

et al. 2016a). For example, the decrease in the plateau

duration with lower ZAMS masses or higher mass loss

(increased ηwind) is as expected. The increase in plateau

luminosity with decreasing αMLT,H is because those stars

with lower αMLT,H have a larger stellar radius at time

of explosion. However, other variations in these figures

are not as easily diagnosed.

Figure 40 exhibits model lightcurves as explosion pa-

rameters are varied. Again, many cases lead to the ex-

pected outcomes, such as the increase in the plateau

luminosity with increasing explosion energy and the in-

creased duration of the plateau with increasing nickel

mass. The changes caused by varying the RTI parame-

ters are slight for the compositional mixing and boxcars,

though, as we discussed in Section 6.6, modifying the

diffusion of energy density during RTI does impact the

shape at the end of the plateau. The impact of the CSM

is similar to that shown by Morozova et al. (2017a) and

Dessart et al. (2017).

With experience in the effects of varying the parame-

ters (knobs) shown in Figures 39 and 40, it is sometimes

possible to get a rough match between model and obser-

vations after a dozen or so attempts. That is about the

amount of effort we undertook to get the models simi-

lar to various observed SNe presented in Section 6.8. Of

course the effects of the various knobs do not combine in

any simple manner, so it can be a nontrivial challenge to

find a combination that gives a good match for both ve-

locities and lightcurve. Our experience suggests that it

is a good strategy to match velocities before lightcurves

since there are few ways available to shift velocities and

many ways to change lightcurves. It is important to in-

clude velocities in judging potential matches because of

the multiple degeneracies, as will be seen below where

we show two models similar to SN 1999em with quite dif-

ferent ejecta masses and explosion energies. Even when

using both velocities and lightcurves, it remains a chal-

lenge to find a unique “best” match.

6.8. Applications to a Few Type IIP SNe

To show examples of what can be accomplished with

these new capabilities, we have modeled four Type IIP

SNe: 1999em, 2005cs, 2009N and 2012A. These cover

a range of luminosities, plateau durations and nickel

masses and have readily available data (Pejcha & Pri-

eto 2015a,b) for bolometric luminosities and Fe II ve-

locities.8 We follow the steps described in Section 6.7,

iterating to reach the matches shown. The models are

not intended to demonstrate the best matches that can

be achieved using MESA and STELLA. An investment of

more effort could produce better matches, but is beyond

the scope of this paper. The parameters we choose are

shown in Table 3.
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Figure 41. Effect of CSM on a model (99em 19) similar
to SN 1999em. The influence is particularly apparent in the
early time lightcurves and velocities.

We note a few general insights gained from our mod-

eling. We found that the radii of red supergiant models

from MESA were too large for these Type IIP SNe models

unless we set αMLT,H = 3. All models benefited at early

times by having some CSM present. Figure 41 shows

how the early 1999em model predictions change as CSM

is added to the value shown in Table 3. The luminosity

at early times is a far better match, as are the earli-

est velocity data. As expected, by day 50 and beyond

there is no impact of the CSM on the model predictions.

Comparisons of how the luminosity collapsed at the end

of the plateau drove us to prefer an enhancement in ηR,e
in several cases.

To exhibit some of the possible degeneracies, we con-

structed two distinct models for 1999em. As shown

in Figure 42, they are both reasonable models for the

bolometric luminosity and Fe II velocities. However,

8 We especially thank Ondřej Pejcha and Stefano Valenti for
providing the necessary data.
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Table 3. Key properties and parameters associated with the core-collapse SN models. The column “case” identifies the model.
The “progenitor parameters” sub-table lists input parameters used during the MESA evolution of the models to core infall: initial
mass (MZAMS), initial metallicity (Z), initial rotation ((v/vc)ZAMS), overshooting parameter (fov), wind scaling factor (ηwind), and
the mixing length for MLT in the H envelope (αMLT,H). The “stellar properties at the time of explosion” sub-table lists physical
quantities evaluated in the MESA model at the time the Fe core begins to infall: mass (Mexp), effective temperature (Teff), radius
(Rexp), luminosity (Lexp), mass of the He core (MHe), and initial mass of the Fe core that will be excised (Mc,i). The “explosion
properties and parameters” sub-table lists input parameters like the total energy after explosion Eexp and the 56Ni mass MNi as
well as properties of the model including the final core mass after fallback (Mc,f) and the total ejecta mass (Mej). This sub-table
also lists input parameters used in the MESA plus STELLA modeling such as the RTI parameter (ηR,e) and the number of boxcar
smoothing passes (“boxcar”). Parameters controlling the extent of the CSM are also needed; for a wind profile this includes the
wind duration (tCSM), mass loss rate (ṀCSM), and velocity (vCSM). Many properties are omitted for the stripped case because
this is an ensemble of models with a range of envelope stripping (see Section 6.9).

progenitor parameters

case MZAMS [M�] Z (v/vc)ZAMS ηwind fov αMLT,H

std 16 16.0 0.02 0.2 0.4 0.01 3.0

99em 16 16.0 0.02 0.2 0.4 0.01 3.0

99em 19 19.0 0.02 0.2 0.4 0.00 3.0

05cs 13.0 0.006 0.0 0.1 0.01 3.0

09N 13.0 0.006 0.0 1.0 0.01 3.0

12A 11.8 0.02 0.2 0.1 0.002 3.0

13bvn 11.0 0.02 0.0 0.0 0.01 2.0

stripped 17.0 0.02 0.3 0.0 0.01 3.0

stellar properties at time of explosion

case Mexp [M�] Teff [K] Rexp [R�] log(Lexp/L�) MHe [M�] Mc,i [M�]

std 16 14.5 3960 759 5.11 5.58 1.58

99em 16 14.5 3960 759 5.11 5.58 1.58

99em 19 17.8 4490 603 5.13 6.58 1.50

05cs 12.9 4280 537 4.95 4.37 1.57

09N 11.6 4290 549 4.96 4.34 1.67

12A 11.6 4300 525 4.94 4.08 1.49

13bvn 3.4 26520 7.24 4.37 3.40 1.57

stripped — — — — — —

explosion parameters and properties

case Eexp [1051 erg] Mc,f [M�] Mej [M�] MNi [M�] ηR,e/ηR boxcar tCSM [y] ṀCSM [M� yr−1] vCSM [km s−1]

std 16 0.65 1.58 12.9 0.04 1.0 0 0.0 0.0 0.0

99em 16 0.60 1.58 12.9 0.042 2.0 3 1.0 0.25 10

99em 19 0.78 1.50 16.3 0.042 1.0 3 1.2 0.30 12

05cs 0.16 2.51 10.4 0.009 7.0 1 1.0 0.30 10

09N 0.36 1.67 9.9 0.028 30.0 3 1.4 0.30 10

12A 0.28 1.49 10.1 0.009 3.0 2 0.9 0.30 10

13bvn 0.95 1.57 1.8 0.110 1.0 5 0.0 0.0 0

stripped 0.63 — — 0.037 1.0 20 0.0 0.0 0
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Figure 42. Two models similar to SN 1999em (99em 16
and 99em 19) with significantly different ejecta masses and
total energies.
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Figure 43. Model (05cs) similar to the low luminosity ex-
ample SN 2005cs.

their ejected masses and radii differ significantly, one

has 12.9 M� and 770 R�, whereas the other has 15.9 M�
and 600 R�. Utrobin (2007) gave an ejected mass of

19.0± 1.2 M�, a radius of 500 R�, and an explosion en-

ergy of 1.3×1051 erg. Bersten et al. (2011) gave an ejecta

mass of 17.6 M�, radius of 800 R�, and explosion energy
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Figure 44. Model (09N) similar to SN 2009N. Further ex-
periments might produce a model with a better match to
the drop at the end of the plateau. Alternatively, this model
might be a useful start when looking for a match to an ob-
served light curve with a slow decline from the plateau.

of 1.25×1051 erg. Utrobin et al. (2017) model this event

with a 3D simulation from explosion to shock breakout,

similar to the Munich L15 model we discuss in Section 5,

but with an explosion energy of about 0.5×1051 erg. For

comparison, the MESA models for 1999em have total en-

ergies after explosion of 0.60× 1051 erg for the case with

12.9 M� ejected mass, and 0.78 × 1051 erg for the case

with 16.3 M� ejected mass.

We previously showed 2012A in Figure 36. Our model

had an ejected mass of 10.1 M� to compare with 7.8 M�
from Morozova et al. (2017b), 12.5 M� from Tomasella

et al. (2013) and 13.1± 0.7 M� from Utrobin & Chugai

(2015). Tomasella et al. (2013) also reported a progen-

itor luminosity of log(L/L�) = 4.73 ± 0.13, just a bit

fainter than our model’s value. Figure 43 shows our

model for 2005cs. Our model has an ejected mass of

10.4 M�, slightly higher than the 9.5 M� reported by

Spiro et al. (2014) and the 7.8 M� reported by Morozova

et al. (2017b). Figure 44 shows our model for 2009N,

which has an ejected mass of 9.9 M�, whereas Morozova

et al. (2017b) found 9.3 M� and Takáts et al. (2014)

found 11.5 M�.

6.9. Partially Stripped Core Collapse SNe

There is a well-defined class of core collapse SNe where

either much (Type IIb) or nearly all (Type Ib and Ic) of

the H envelope was lost prior to the core collapse event.
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Figure 45. Models of partially stripped SNe. These
MZAMS = 17 M� models have a range of H envelope masses
giving rise to a range of plateau durations. The upper
panel shows the bolometric luminosity while the lower panel
shows the velocity. All models have the same total en-
ergy post-explosion of 0.65 × 1051 erg and a 56Ni mass of
0.037 M�. Other model parameters are indicated in Table 3
(case “stripped”). The lowest mass case has about 0.1 M�
of the H envelope remaining, similar to that of a Type IIb
SN (Ergon et al. 2015).

Dessart et al. (2015) performed detailed radiative trans-

fer models for a large set of progenitors from binary evo-

lution, while Morozova et al. (2015) carried out diffusive

calculations with varying amounts of mass loss. Yoon

et al. (2017) explored MESA models constructed from bi-

nary transfer scenarios and applied them to a set of well

observed Type IIb events. We have not yet been able

to deal successfully with Ic models because of numerical

problems related to the extreme ejecta velocities that

occur at shock breakout. However, it is possible to do

both IIb and Ib models as shown here.

In Figure 45, we show the MESA plus STELLA predic-

tions for luminosities and photospheric velocities for a

range of models with varying amounts of mass stripped

from a 17 M� ZAMS model, ranging from the entire ini-

tial H envelope still remaining down to only 0.1 M� of

the H envelope left at the time of explosion. Similar to

Figure 7 of Morozova et al. (2015), the plateau period

becomes shorter as the residual H shell mass declines.

Our smallest mass model has an H envelope mass com-

parable to typical models of Type IIb SNe and generates

a light curve comparable to observed Type IIb SNe (Er-

gon et al. 2015). Figure 46 shows the interior properties

of these same models near the moment of shock break-

out. For models which have been stripped, the reverse

shock has not reached the IB at the time the forward

shock reaches the surface. Since RTI mixing does not

occur in STELLA, these models would incompletely in-

clude the effects of the RTI.
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Figure 46. Models of MZAMS = 17 M� stars (case
“stripped”) that have experienced a range of stripping. The
density, velocity and pressure profiles are shown at the time
of handoff from MESA to STELLA, very close to shock break-
out. The gray band shows the range of locations of the H/He
boundary at the time of explosion.

Cao et al. (2013) discovered the fully stripped Type Ib

SNe iPTF13bvn in the nearby spiral galaxy NGC 5806

with the intermediate Palomar Transient Factory (Law

et al. 2009). This is one of only a few stripped SNe

with a progenitor detection. Using data from Cao et al.

(2013) and Fremling et al. (2014), we show in Figure 47

our model that approximately matches the iPTF13bvn

light curve. The model is derived from an 11 M� ZAMS

model and has a remaining mass of only 3.4 M� at the

time of explosion with total energy after explosion of

0.95× 1051 ergs and a 56Ni mass of 0.11 M� distributed

throughout the remaining star (ejecta mass 1.8 M�).

Fremling et al. (2014) also modeled this lightcurve, find-

ing the total energy to be 0.85+0.5
−0.4 × 1051 ergs, with a

a 56Ni mass of 0.049+0.02
−0.012 M�, and total ejecta mass of
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1.94+0.50
−0.58 M�. Our parameters are similar, falling within

the range of the quoted uncertainties, except for the 56Ni

mass.
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Figure 47. Comparison of model (13bvn) similar to the
stripped Type Ib SN iPTF13bvn with the observed bolo-
metric lightcurve.

7. BLACK HOLE FORMATION

Compact objects are a natural product of the evolu-

tion of massive stars. A broad consensus on which mas-

sive stars produce black holes (BH) has not yet been

reached (Timmes et al. 1996; Fryer & Kalogera 2001;

Heger et al. 2003; Eldridge & Tout 2004; Zhang et al.

2008; Ugliano et al. 2012; Clausen et al. 2015; Sukhbold

et al. 2016b; Müller et al. 2016; Limongi 2017).

The lack of consensus is due to a variety of differences

in the modeling, including stellar wind treatments dur-

ing the pre-supernova stage (Renzo et al. 2017); shellular

rotation prescriptions (e.g., Limongi 2017); sensitivity

to the initial metallicity (e.g., O’Connor & Ott 2011),

number of isotopes in the reaction network (Farmer et al.

2016), adopted values of critical reaction rates (deBoer

et al. 2017; Fields et al. 2017), and ignition of core car-

bon burning (Farmer et al. 2015; Cristini et al. 2017;

Petermann et al. 2017); variations from spatial and tem-

poral resolution (Farmer et al. 2016); convection during

core-collapse (e.g., Couch et al. 2015); and effects from

binary partners (e.g., Marchant et al. 2016; Batta et al.

2017). In addition, current estimates of the neutron

star and BH initial mass function chiefly rely on pa-

rameterized explosion models and not on first principles

calculations.

This section explores MESA models that can produce

BHs. First, we consider MZAMS ≤ 60M� models that

can form a BH without encountering dynamical insta-

bility due to e+e− pair production. Second, we sur-

vey MZAMS ≥ 60M� models that encounter dynamical

instability, either entering the Γ1≤ 4/3 regime once to

produce a pair-instability supernova (PISN) (Fowler &

Hoyle 1964; Rakavy et al. 1967; Rakavy & Shaviv 1967;

Barkat et al. 1967; Fraley 1968; Ober et al. 1983; Fryer

et al. 2001; Scannapieco et al. 2005; Kasen et al. 2011;

Chatzopoulos et al. 2013), or multiple times to produce

a pulsational pair-instability supernova (PPISN) and a

BH remnant (Barkat et al. 1967; Woosley et al. 2007a;

Chatzopoulos & Wheeler 2012; Woosley 2017).
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Figure 48. He core mass (upper panel) and mass location
where the gravitational binding energy is equal to 1048 erg
(lower panel) for ZAMS masses of 30, 45, and 60 M�. Three
stellar wind treatments, two wind scaling factors, and two
rotation rates are shown for each ZAMS mass. The varia-
tion, illustrated by the tan band, induced by these modelling
choices increases with ZAMS masses. Also shown are mod-
els from the literature (Renzo et al. 2017; Farmer et al. 2016;
Sukhbold & Woosley 2014; Limongi & Chieffi 2003, 2006;
Woosley et al. 2002), although each adopts different mod-
elling choices and definitions of the He core mass.
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7.1. Progenitors that Do Not Pulse

The upper panel of Figure 48 shows the He core mass

from Z=0.02 MZAMS=30, 45, and 60 M� models. The

lower panel shows the mass location where the binding

energy is 1048 erg. Each ZAMS mass uses an exponen-

tial convective overshoot parameter fov=0.004 applied

at all convective boundaries, a mixing length αMLT=1.5,

MLT++ enabled (see Paper II), and is run to the on-

set of core-collapse (infall velocity ≥ 1000 km s−1). We

illustrate the variation in the He core mass and mass

location where the binding energy is 1048 erg from the

effects of rotation, wind strength, and the wind schemes

of Nieuwenhuijzen & de Jager (1990), van Loon et al.

(2005), and de Jager et al. (1988).

To estimate a BH mass from the structure at core col-

lapse, we use the mass location where the binding en-

ergy integrated from the surface exceeds 1048 erg. This

is motivated by neutrinos removing ≈ 1053 erg during

core-collapse, reducing the gravitational mass of the core

by ≈ 0.3 M�. The outer part of the star responds to

the sudden decrease in the gravitational field by driving

a sound wave that steepens into a shock that unbinds

some of the outer envelope (Coughlin et al. 2017). Mass

with binding energy . 1047 erg is likely to be ejected

(Nadezhin 1980; Lovegrove & Woosley 2013) while mass

that is not ejected will likely become part of the BH.

Figure 48 suggests that BH masses estimated in this

simple way can be significantly larger than the final He

core mass, and more sensitive to the assumed model pa-

rameters. For example, there is wide variation in the

expected BH mass for the 60 M� progenitor depending

on choice of wind scheme and scaling factor, whereas

modest rotation has a smaller effect.

7.2. Pulsational Pair-instability Supernovae

Stars with MZAMS & 60 M� are expected to become

dynamically unstable before core O depletion as e+e−

pair production leads to regions where the adiabatic in-

dex Γ1 ≤ 4/3 (Fowler & Hoyle 1964; Rakavy & Sha-

viv 1967). The ensuing collapse results in explosive O

burning, with a variety of possible outcomes. Stars can

produce PISNe where the energy injected from explosive

O burning completely unbinds the star without leaving

a compact remnant. Alternatively, stars can undergo a

cyclic pattern of entering the pair instability region, con-

tracting, burning, and expanding, leading to PPISNe.

Individual pulses in a PPISN can remove a large frac-

tion of the mass of the star at velocities of several thou-

sand km s−1, with the remaining material settling down

into hydrostatic equilibrium at a lower central tempera-

ture than before the pulse. The star then contracts as it

loses energy due to radiation and neutrino emission un-
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Figure 49. Central temperature and density for models
with metallicity Z = 0.001 undergoing core collapse (50 M�),
PPISN (90 M�), and PISN (140 M�).

til it undergoes an additional pulse or collapses to form

a BH. Depending on its initial mass, the time between

pulses varies from a fraction of a year to millennia, with

the outer ejected layers expanding to very low densities

and becoming optically thin.

MESA currently cannot simultaneously follow the long

term evolution of the bound core and the ejecta, making

it necessary to remove the unbound layers from the stel-

lar model. To do this we model individual pulses using

both the Riemann solver hydrodynamics (Section 4), as

well as the 1D treatment of the Rayleigh-Taylor instabil-

ity (Section 5), until the star is approximately in hydro-

static equilibrium. We then relax a new stellar model

using the methods described in Appendix B, such that it

has the same mass, entropy, and composition profiles as

the layers that remained bound in the hydrodynamical

model. This model is then evolved assuming hydrostatic
equilibrium until the onset of another pulse or the final

core-collapse to a BH.

As an example, we compute models at a metallicity

Z = 0.001, using similar parameters as in Section 7.1.

The van Loon scheme is used for low-temperature winds

with a scaling factor of 0.4. In addition, convection

is modeled as a time-dependent process by limiting

changes in convective velocities as in Arnett (1969) and

Wood (1974).

Figure 49 shows the evolution in the ρc-Tc plane dur-

ing late burning stages for a 90 M� model undergoing a

PPISN, a 50 M� model experiencing iron-core collapse,

and a 140 M� model producing a PISN. Although the

center of the 90 M� star does not evolve into the re-

gion where Γ1 < 4/3, the outer layers of the CO core

do. Coupled with enhanced neutrino losses from pair-
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Figure 50. Late-time evolution of a MZAMS = 90 M� star
with a metallicity Z = 0.001 undergoing a PPISN. (up-
per panel) Evolution of the central temperature showing a
zoomed-in region covering 2.2 days which contains the first
two pulses, as well as an additional zoom-in covering 1.8
hours which shows the first pulse and its ring-down into hy-
drostatic equilibrium. (lower panel) Total mass of the star
below the escape velocity, He core mass and CO core mass
during pulsations. The online animated Figure shows the
time evolution of these quantities and the interior structure
of the star.

annihilation, this causes the star to collapse and undergo

four distinct pulses before finally collapsing into a BH.

At the onset of the first pulse, the star has a mass of

87.1 M�, with a He core of 45.6 M� and a CO core of

41.1 M�. As shown in Figure 50 the first two pulses

happen within two days of each other and they remove

the entire H envelope. The remaining two pulses remove

almost the entire He envelope, resulting in a final mass

of 41.2 M� when the star collapses into a BH.

Figure 51 shows key masses on a grid encompass-

ing ZAMS masses for which PPISNe occur under our

model assumptions. Our PPISN progenitors have He

core masses in the range of 28 M�−67 M�, and no BHs

with masses above 50 M� are formed. These results are

in broad agreement with Woosley (2017). However, Fig-

ure 51 shows that the range of ZAMS masses that result

in a PPISN is significantly different to the one computed

by Woosley (2017). This can be attributed to a different

choice of input physics such as core overshooting, as well

as a different initial metallicity.

8. ENERGY ACCOUNTING IN STELLAR

EVOLUTION
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Figure 51. Total mass, He core mass, and CO core mass at
carbon depletion for single stars at a metallicity Z = 0.001.
The 50 M� model undergoes iron-core collapse, while the
140 M� model experiences complete disruption through a
PISN. All other models experience PISNe. For comparison,
the models with no mass loss from Woosley (2017) at a metal-
licity Z = 0.0016 are also shown.

Paper I describes the stellar structure equations and

their implementation in MESA. In order to provide phys-

ically and numerically accurate solutions of these equa-

tions, it is often necessary to evaluate them in different

ways depending on the details of the star being sim-

ulated. In particular, there are a number of different

ways to formulate and evaluate the equations solved by

MESA that encode local and global energy conservation.

The goal of this section is to clarify the available options,

discuss when and why they are used, and describe how

various forms of energy are tracked and accounted for in

stellar evolution. While in places this section reads like

a tutorial, it is in fact the first time we have presented

a detailed description of a complex and critical aspect

of how MESA works, information that is important for

intelligent use of this software tool.

In Section 8.1 we describe the fundamental equations

we are solving, and in Section 8.2 we describe choices

associated with their numerical implementation. In Sec-

tion 8.3 we describe the connection between the form of

the energy equation typically used in stellar evolution

calculations and the version used when the hydrody-

namics options discussed in Section 4 are enabled. In

Section 8.4 we clarify how the energy associated with

ionization is included in MESA. In Section 8.5 we describe

the numerical approach necessary to ensure that the la-

tent heat associated with crystallization in a white dwarf

(WD) is included in MESA. In Section 8.6 we discuss the

difficulties introduced by the necessity to blend between

http://mesa.sourceforge.net/mesa4.html
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different equations of state (EOS) as the thermodynamic

conditions in the stellar interior change, and how MESA

minimizes artifacts associated with these blends. In Sec-

tion 8.7 we discuss the energy associated with gravita-

tional settling.

8.1. Fundamental Equations

In the stellar structure equations (e.g., Cox & Giuli

1968; Kippenhahn et al. 2012), energy conservation is

typically formulated by considering the energy flow in

and out of a fluid parcel. In this Lagrangian picture, to

understand how the energy of a fluid parcel is changing,

we account for the specific (i.e., per unit mass) rate of

energy injection into the parcel, ε, and the specific rate

of energy flow through the boundaries (∂L/∂m; L(m)

is the luminosity profile and m the Lagrangian mass

coordinate). The specific heating rate (Dq/Dt) for the

parcel must then satisfy

Dq

Dt
= ε− ∂L

∂m
, (54)

where D/Dt is the Lagrangian time derivative. Except

in the case of hydrodynamics described in Section 4

(where a total energy equation is solved; see Section 8.3),

the basic equation to be solved is always some form of

Equation (54). By tradition, the negative of the left-

hand side of Equation (54) is called εgrav.

Thermodynamics relates the heating of material to the

changes in its properties. The first law of thermodynam-

ics states that the total heat added δQ for a parcel is

δQ ≡ dE + PdV, (55)

where E is the internal energy, P is the pressure, and

V is the volume. Let Ni be the number of particles of

species i in the parcel. Then expanding E in terms of the

independent thermodynamic basis variables (S, V,Ni)

yields the following thermodynamic identity:

dE + PdV = TdS +
∑

i

µidNi , (56)

where S is the entropy, and T is the temperature. The

sum runs over all species present, and

µi ≡
(
∂E

∂Ni

)

S,V

(57)

is the chemical potential for species i.

The number abundance of every species is defined

with reference to the total number of baryons NB as

Yi ≡ Ni/NB. Denoting Avogadro’s number by NA,

the atomic mass unit is mamu = 1 g/NA. The specific

(i.e., per unit mass) form of Equation (56) is then given

by multiplying by the invariant NA/NB to find

δq ≡ de+ Pd

(
1

ρ

)
= Tds+

∑

i

(
∂e

∂Yi

)

s,ρ

dYi . (58)

The total baryonic mass density is ρ, so that 1/ρ is the

specific volume, and e and s are specific energy and en-

tropy respectively. Local thermodynamic equilibrium

(LTE) determines a unique solution for the ionization

state of each isotope. Thus, composition is completely

specified by a set of number abundances {Yi} for all nu-

clear isotopes.

Equation (58) is relativistically correct when the rest

mass is included in the energy and the chemical poten-

tials. Therefore, in principle, changes in nuclear rest

masses due to nuclear reactions could be accounted for

via this equation. However, in MESA, the energetic effects

associated with composition changes due to nuclear re-

actions are not included in εgrav. Instead, these impor-

tant terms are accounted for via εnuc (the specific energy

generation rate of nuclear reactions) which is evaluated

separately and included as part of the local source term

ε in Equation (54) (see Paper I).

It is often convenient to specify compositions in terms

of the baryonic mass fractions {Xi} via the relation

Xi = AiYi, where Ai is the mass number for isotope

i. Since rest-mass changes due to nuclear reactions

are handled separately from εgrav, ρ and {Xi} can be

treated as independent basis variables without introduc-

ing any ambiguity into the chemical potential term in

Equation (58). Some EOS options express the composi-

tion dependence in terms of aggregate quantities; exam-

ples include hydrogen abundance X, helium abundance

Y , metallicity Z, average mass number Ā, and average

atomic number Z̄.

The value for εgrav can be computed beginning from

either the left or right hand side of the equals sign in

Equation (58). Usually, some form of the left hand side

is used, but in Section 8.5 we will describe a case where

it is more convenient to use the right hand side.

8.2. Implementation

Basic variables are those quantities directly calculated

by MESAstar’s solver. Examples include velocity, radius,

and the thermodynamic variables. MESA offers options

for selecting (ρ, T, {Xi}) or (Pgas, T, {Xi}) as the ther-

modynamic variables. The EOS routines calculate other

thermodynamic quantities as a function of the chosen

variables, e.g., e = e(ρ, T, {Xi}). MESA solves the stel-

lar structure equations implicitly, thus it is possible to

approximate total time derivatives of any quantity cal-

culated in the stellar model simply by differencing its
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value at the start and end of a timestep. Therefore, one

way to evaluate εgrav would be to directly calculate the

time derivatives in Equation (58). Two possible versions

of εgrav would then be

−εgrav = T
Ds

Dt
+
∑

i

∂e

∂Yi

DYi
Dt

, (59)

and

−εgrav =
De

Dt
+ P

D

Dt

(
1

ρ

)
. (60)

While simple to construct, the finite differences neces-

sary to calculate these equations are often numerically

problematic.

To see the potential numerical issues, consider the im-

plementation of Equation (54) using Equation (60) in

cell k with mass dmk over a timestep δt. The derivative

of a quantity Dy/Dt is typically constructed as a finite

difference of y over the timestep, so after integrating

over the mass of zone k, we have

0 =

(
εk −

ek,end − ek,start

δt

− Pk
1/ρk,end − 1/ρk,start

δt

)
dmk

−(Lk − Lk+1) .

(61)

The implicit solver scheme in MESA attempts to reduce

the residual from evaluating the right hand side of this

equation below some tolerance.

While the implicit scheme in MESA may sometimes find

acceptable results for an equation such as Equation (61),

finite numerical precision can result in troublesome be-

havior for the time derivatives involving subtractions.

In particular, over a small timestep where the change

in ek or ρk is small compared to the overall magnitude

of these quantities, floating point arithmetic can suffer

significant loss of precision. When energy scales aris-

ing from these types of finite difference derivatives are

comparable to εk, the implicit solver may be unable to

converge to an acceptable solution.

To avoid these problems, the equations can be cast in

terms of derivatives that are not evaluated using sub-

tractions. Such derivatives are available only for the

basic variables, since the Jacobian matrix for an evo-

lution step satisfying the equations of stellar structure

in MESA is written in terms of the basic variables and

their derivatives (see Paper I, Section 6.2 and Paper II,

Section B.2 and Figure 47). For MESA, ρ and T serve as

default variables.

Modifying Equation (60) to take advantage of ρ as a

basic variable yields

−εgrav =
De

Dt
− P

ρ

D ln ρ

Dt
, (62)

but the change in e is still evaluated using subtraction.

Another related form, obtained by application of mass

continuity, is

−εgrav =
De

Dt
+ P

∂

∂m
(vA) , (63)

where v is the cell velocity and A is the area of the cell

face. This is the form used in the artificial viscosity

based hydrodynamics options described in Paper III.

Expanding the total derivative of energy and thus

eliminating the subtraction motivates the following al-

ternative forms. Expanding e in terms of its dependence

on the basic variables ρ and T and dropping the depen-

dence on composition gives

−εgrav = cV T
D lnT

Dt
+

[
ρ

(
∂e

∂ρ

)

T

− P

ρ

]
D ln ρ

Dt
, (64)

where cV ≡ (∂q/∂T )ρ = (∂e/∂T )ρ. One can also choose

to expand e in terms of its dependence on P and T

(dropping composition dependence) and then convert to

a form given in terms of ρ instead of P to obtain

−εgrav = cPT

[
(1−∇adχT )

D lnT

Dt
−∇adχρ

D ln ρ

Dt

]
,

(65)

where cP ≡ (∂q/∂T )P and ∇ad ≡ (∂ lnT/∂ lnP )s. The

derivation for this expression in terms of P and T is

given in Chapter 4 of Kippenhahn et al. (2012), from

which it is straightforward to obtain Equation (65) using

χT ≡ (∂ lnP/∂ lnT )ρ and χρ ≡ (∂ lnP/∂ ln ρ)T .

Since ρ and T are basic variables, the time derivatives

appearing in Equations (64) or (65) involve no subtrac-

tions. Hence, solving Equation (54) with εgrav as de-

fined by those two equations will not be susceptible to

the same losses of numerical precision as other forms, at

the cost of dropping the composition terms. Similarly,

Equation (4.47) of Kippenhahn et al. (2012) will yield

the same stability when P and T are used as basic vari-

ables. When Pgas and T are selected as basic variables,

the identification P = Pgas + aT 4/3 allows writing

−εgrav = cPT

[(
1− 4∇ad

Prad

P

)
D lnT

Dt

−∇ad
Pgas

P

D lnPgas

Dt

]
.

(66)

Section 4.5 in Kippenhahn et al. (2012) also shows how

this local energy treatment of εgrav results in global en-

ergy conservation, including total gravitational potential

energy from which the name εgrav is derived.

The superior numerical stability of Equations (64)–

(66) comes at the cost of using derivative quantities

such as cV and χρ. The Jacobian matrix of an im-

plicit method thus requires the partial derivatives of cV
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Table 4. Summary of εgrav Options

Inlist Option εgrav

use_PdVdt_form_for_eps_grav (60)

use_dlnd_dt_form_for_eps_grav (62)

use_dedt_form_of_energy_eqn (63)

use_dEdRho_form_for_eps_grav (64)

MESA default (all other inlist options .false.) (65)

lnPgas_flag (and other inlist options .false.) (66)

use_lnS_for_eps_grav (67)

and χρ. An EOS must therefore be capable of return-

ing the state functions P , e, and s along with their first

derivatives (e.g., cV and χρ) and second derivatives (e.g.,

∂cV /∂T ).

As noted above, Equations (64)–(66) drop the com-

position terms, which is justifiable if the derivatives

(∂e/∂Xi)(DXi/Dt) are negligible for each Xi. Dropping

composition terms is often justified in stellar evolution

scenarios where timescales for these changes are very

slow or their associated energies are negligible, such as

MS burning where energy release from nuclear burning

dominates any small changes in internal energy due to

composition evolution over a single step (Kippenhahn

et al. 1965; Garćıa-Berro et al. 2008). Making this as-

sumption, MESA also offers an option for calculating εgrav

in terms of a simplified form of Equation (59):

−εgrav = T
Ds

Dt
, (67)

which drops composition dependence to offer an expres-

sion that is more convenient to evaluate.

However, even after composition dependence related

to nuclear burning is accounted for with a separate εnuc

term as discussed in Section 8.1, other processes that

change abundances (e.g., mixing) may be important. In

cases where dropping these terms is not justifiable, it

may be necessary to add a compensating local source

term ε in Equation (54).

In summary, MESA currently offers options for solv-

ing Equation (54) with εgrav defined in any of the ways

given in Equations (60)–(67). Figure 52 schematically

summarizes the relationships between these equations

and Table 4 shows the inlist commands necessary for

invoking each of these options. Usually, the superior

numerical stability gained by using Equation (65) is to

be preferred, and hence it is the MESA default, but users

should be aware of the possibility that other forms may

be necessary to capture important physics. One such

case for Equation (67) is described in Section 8.5. An-

other is the artificial viscosity-based implicit hydrody-

namics described in Paper III (see Section 4, Equation

41), where choosing Equation (63) helps ensure intrinsic

energy conservation.

8.3. Relationship to the Riemann Solver-Based

Hydrodynamics Implementation

When using the Riemann solver-based hydrodynamics

capabilities described in Section 4, MESA does not cast

the stellar structure equations in terms of local heating

as in Equation (54). Instead, it combines Equation (54)

with the constraint of fluid momentum conservation to

form a local total energy equation.

We begin with the mass continuity equation,

Dρ

Dt
= − ρ

r2

∂

∂r

(
r2u
)
, (68)

and the momentum equation,

Du

Dt
= −1

ρ

∂P

∂r
− ∂Φ

∂r
, (69)

written in Lagrangian form and assuming spherical sym-

metry. The variable u is the radial velocity and Φ is the

gravitational potential. The Lagrangian derivative op-

erator is D/Dt = ∂/∂t+ u∂/∂r.

Multiplying Equation (69) by u gives

D

Dt

(
1

2
u2

)
= −u

ρ

∂P

∂r
− u∂Φ

∂r
. (70)

The gravitational potential does not explicitly depend

on time (∂Φ/∂t = 0), so DΦ/Dt = u∂Φ/∂r. This im-

plies
D

Dt

(
1

2
u2 + Φ

)
= −u

ρ

∂P

∂r
. (71)

Using Equations (54) and (60) we have

De

Dt
− P

ρ2

Dρ

Dt
= ε− ∂L

∂m
. (72)

Adding Equations (71) and (72) gives

D

Dt

(
e+

1

2
u2 + Φ

)
=
P

ρ2

Dρ

Dt
− u

ρ

∂P

∂r
+ ε− ∂L

∂m
. (73)

Using mass continuity (Equation 68) this becomes

D

Dt

(
e+

1

2
u2 + Φ

)
= − 1

ρr2

∂

∂r

(
Pur2

)
+ε− ∂L

∂m
. (74)

In spherical coordinates

1

ρr2

∂

∂r

(
r2f
)

=
∂(Af)

∂m
, (75)

where A = 4πr2. Thus we arrive at the equation that

MESA solves,

D

Dt

(
e+

1

2
u2 + Φ

)
= ε− ∂

∂m
(L+ PAu) . (76)
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Dq
Dt

De
Dt + P D

Dt

(
1
ρ

)

De
Dt + P ∂

∂m (vA) De
Dt − P

ρ
D ln ρ
Dt

cV T
D lnT
Dt +

(
ρ ∂e∂ρ − P

ρ

)
D ln ρ
Dt

cPT
[
(1−∇adχT ) D lnT

Dt −∇adχρ
D ln ρ
Dt

]

T Ds
Dt +

∑
i
∂e
∂Yi

DYi

Dt

ε− ∂L
∂m = −εgrav ≡

Thermodynamic
Laws

Mathematical
Identities

Physical
Assumptions

Figure 52. Schematic showing the relationships in Equations (59)–(65).

8.4. Ionization

The internal energy reported the EOS should include

the energy associated with ionization9 and molecular

dissociation. The assumption of LTE specifies the ion-

ization state given (ρ, T, {Xi}). Since MESA does not

regard a change in ionization as a change in composi-

tion, it is not necessary to include separate composition

derivatives in εgrav in order to account for the energetic

effects of changes in ionization state.

To demonstrate a specific scenario where MESA ac-

counts for ionization energy, we evolve a 1 M� pre-MS

model composed of pure H. We compare quantities cal-

culated by MESA with other, simpler estimates. We cal-

culate the thermal energy assuming a monatomic ideal

gas,

ethermal =
3NAkBT

2µ
. (77)

We calculate the ionization energy for pure H as

eion = (1− fH)NAEH +
NAEH2

2
, (78)

where we assume the ionization fraction of H is given

by the Saha equation. The variable fH represents the

neutral fraction of H. The H ionization energy is EH =

13.6 eV and Equation (78) also includes the dissociation

energy of molecular H (EH2 = 4.52 eV) assuming that

no H is in the molecular state.

9 Since this energy is released upon recombination, it is also
often referred to as “recombination energy”.
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Figure 53. The value of εgrav in the pure-H pre-MS model,
evaluated over a region near the stellar surface that includes
an ionization zone (where εion 6= 0). The solid colored lines
indicate the individual energy terms. Their sum (dotted
black line) agrees with the value calculated by MESA (solid
gray line).

During the evolution, we record εgrav calculated by

MESA using Equation (65). We also evaluate the quantity

D

Dt
(ethermal)

︸ ︷︷ ︸
εthermal

+
D

Dt
(eion)

︸ ︷︷ ︸
εion

+P
D

Dt

(
1

ρ

)

︸ ︷︷ ︸
εPdV

that separates out the thermal and ionization energy. In

Figure 53 we compare these two approaches, making it

clear that all three terms in the above expression play an

important role. Their sum agrees with the MESA εgrav,

indicating that each of these terms is accounted for in

the MESA calculation.
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Figure 54. Specific internal energy at a fixed Lagrangian
coordinate in the pre-MS model (upper panel). The solid
colored curves indicate the individual energy terms. The
internal energy reported by MESA (solid gray curve) exceeds
the thermal energy because of the ionization energy. The
lower panel shows the neutral fraction of the H.

Figure 54 shows the history of the material at the La-

grangian coordinate (M − m)/M� = 10−5. We plot e

reported by the MESA EOS along with ethermal and eion

(calculated in same manner as above). At this location,

the specific internal energy is dominated by the ioniza-

tion energy. The lower panel of this figure shows the

neutral fraction of H; towards the left of the plot, the

H is fully neutral. In this region the ionization energy

plateaus at the dissociation energy of molecular H (see

Equation 78).

For a star in hydrostatic equilibrium, the virial theo-

rem states that

−1

2

∫ M

0

Gm

r
dm+

∫ M

0

3P

2ρ
dm = 0 . (79)

The right term’s integrand, 3P/(2ρ), is the specific ther-

mal energy of an ideal monatomic ideal gas. Figure 55

shows the total internal energy and gravitational po-

tential energy reported by MESA for the pure-H pre-MS

model. On the same scale we show half the total po-

tential energy plus the internal energy. This quantity is

not zero; rather, by the virial theorem, it should sum to

the non-thermal and non-ideal internal energy (e.g., the

ionization energy). This value, recorded from the MESA

model, agrees well with our estimate of the ionization en-

ergy. Also note that at early times the total energy of the
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Figure 55. Total potential and internal energy in the pure-
H pre-MS model. The sum of half the total potential energy
plus the internal energy (solid gray curve), which by the virial
theorem should be the non-thermal internal energy, agrees
well with our estimate of the ionization energy (dashed black
curve). The deviation at & 105 yr is caused by non-ideal gas
effects.
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Figure 56. Specific (red) and cumulative (black) total en-
ergy (IE + PE) in the envelope of an AGB model (M =
1.0 M�, L = 4.97 × 103 L�, Teff = 2, 920 K, R = 276 R�).
This energy is positive in the envelope due to the inclusion
of ionization energy in the internal energy reported by MESA.

star (internal + potential, not shown) is positive. The

phenomenon of positive total energy when ionization en-

ergy is included also occurs for envelopes of stars on the

asymptotic giant branch (AGB; Paczyński & Zió lkowski

1968). Figure 56 shows the total energy in the envelope

of a 1.0 M� MESA model on the AGB. This confirms that

the ionization energy is included when MESA reports the

total energy of a model.

8.5. Latent Heat
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Figure 57. Cooling for a 0.6 M� C/O WD (MH = 2.7 × 10−5 M�, MHe = 1.5 × 10−2 M�) with different treatments of the
latent heat of crystallization. The default treatment smoothly injects the latent heat over the range 150 ≤ Γ ≤ 175. The right
panel shows differences in cooling time (relative to the default shown in the left panel) required to reach a given luminosity for
other treatments.

Paper II discusses the inclusion of the latent heat of

crystallization for long term WD cooling. Crystalliza-

tion is a first-order phase transition that manifests in the

PC EOS (Potekhin & Chabrier 2010) as an entropy dis-

continuity at a plasma coupling parameter of Γ = 175,

and can be captured in stellar evolution with εgrav in the

form of Equation (67). Since the publication of Paper II,

controls have been added to MESA to allow smoothing out

the injection of latent heat in εgrav over a user-specified

range of Γ. By default, the range for crystallization is

softened to 150 ≤ Γ ≤ 175 to avoid numerical difficul-

ties with sudden energy injection associated with a sharp

transition at Γ = 175. The controls allow for tightening

this range for more precise timing on the occurrence of

crystallization if necessary. Figure 57 shows the small

impact on cooling time for a 0.6 M� WD from spreading

the latent heat over this broader range of Γ relative to
a tighter phase transition for 174 ≤ Γ ≤ 176.

The spreading of the phase transition is accomplished

by calculating both the liquid and solid solutions within

the PC EOS and linearly blending the entropy s and in-

ternal energy e over the specified range of Γ. With εgrav

expressed in the form of Equation (67), the energy of the

phase transition is captured as fluid elements smoothly

traverse from liquid-phase to solid-phase. By default

MESA automatically switches to using εgrav in the form

of Equation (67) for Γ > 150. This choice ensures the

capture of latent heat release.

Theoretical and observational work has suggested that

crystallization in C/O mixtures may occur at higher

Γ than the classical one component plasma value of

Γ = 175 (Horowitz et al. 2007; Winget et al. 2009; Medin

& Cumming 2010; Althaus et al. 2012). Our updated

crystallization controls allow for investigating the effect

on stellar evolution of crystallization at Γ ≈ 240. Fig-

ure 57 shows the potential effects on WD cooling times

of varying the Γ for crystallization. Because the heat-

ing from crystallization is released very late in the WD

evolution, its effects on cooling times are on the order

of Gyr, and variations in crystallization treatment can

lead to changes that are a significant fraction of this

timescale.

The composition terms in Equation (59) that were

dropped to form Equation (67) are negligible as long as

there is no mixing in the crystallization region. Phase

separation may violate this assumption and require a

modified treatment, but we do not consider this process

here. Detailed phase-diagrams for crystallization and

the possible associated phase-separation effects are not

currently supported in MESA, so our investigation here is

limited to the effects of crystallization as a function of

a fixed Γ range.

8.6. EOS Blending

As shown in Figure 1 of Paper I, MESA employs a patch-

work of several EOSs to provide coverage of a maximal

amount of ρ − T space. When blending from one EOS

region into another, care is required to avoid introduc-

ing spurious contributions into εgrav. At high density,

MESA blends from the Helmholtz EOS (HELM, Timmes

& Swesty 2000) for Γ < 10 to the PC EOS (Potekhin &

Chabrier 2010) for Γ > 20 by default. This default has

been changed from the original default of 40 ≤ Γ ≤ 80

given in Paper I due to the optimal agreement between

relevant quantities shown in Figure 59, as explained be-

low. Overall, the two EOSs agree well on thermody-

namic quantities in the blending region (∼ 1% for e and

s), but Figure 58 shows that the absolute magnitude of
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the disagreement can still be large enough to influence

εgrav for a cooling WD when εgrav is expressed in the

form of Equations (59)–(63).

The left panel of Figure 58 indicates that typically

the internal energy difference is ∆e ∼ 1015 erg g−1, while

cPT ∼ 1014−1015 erg g−1 in the region of the blend. As

a WD model cools, most of its ∼ 1033 g of mass must

eventually pass through this transition. If the energy

equation is being solved in the form of Equation (61),

∼ 1048 erg of spurious energy would be introduced into

the model by EOS blending. Since much of this blending

happens after the WD model has cooled to a luminosity

of L . 0.1 L�, this extra energy corresponds to ∆t &
100 Myr of extra WD cooling time.

The default form of εgrav given in Equation (65) does

not suffer from this spurious heating, since it is expressed

in terms of thermodynamic derivatives from the EOS

rather than e and s. For this form of εgrav, the differ-

ences between e or s do not directly enter the equations.

Instead, changes in e with D ln ρ/Dt and D lnT/Dt are

tracked with quantities such as cP and χT , and Figure 59

shows that these agree well for the EOS blend region.

Since the implementation of Equation (65) does not in-

volve any derivatives constructed as finite differences,

the fact that quantities such as cP agree to within a few

percent guarantees that εgrav will be consistent across

the blend, with no significant spurious energy injected

due to blending. Crucially, the release of latent heat de-

scribed in Section 8.5 requires switching to εgrav in the

form of Equation (67) only for zones with Γ > 150, so

both EOS blending and crystallization simultaneously

receive appropriate treatments with different forms of

εgrav in different stellar regions.

8.7. Gravitational Settling

Equation (65) for εgrav ignores changes in internal en-

ergy e due to composition changes. Garćıa-Berro et al.

(2008) point out that a self-consistent evolutionary ap-

proach to WD cooling including the effects of 22Ne set-

tling requires accounting for composition changes due to

element diffusion in εgrav. They adopt pure 12C or 16O

core compositions with trace 22Ne and no other isotopes.

While this approach is useful for rigorous study of self-

consistent WD evolution with diffusion fully coupled to

evolution, it is not well suited for a general treatment of

realistic mixed core compositions.

MESA splits element diffusion into a separate step be-

fore the main structural solve, and hence diffusive effects

are not included in εgrav. We ensure that the energy as-

sociated with 22Ne settling is not included in εgrav by

using Equation (65), and we compensate by including

an extra heating term ε22 in Equation (54). This term

is calculated using velocities saved from the element dif-

fusion step as described in Section 3.5. Our results for

the effects of 22Ne settling on WD cooling agree well

with Garćıa-Berro et al. (2008) and with Deloye & Bild-

sten (2002) who adopt a heating term similar to our

approach.

9. SUMMARY

We explain significant new capabilities and improve-

ments implemented in MESA since the publication of Pa-

per I, Paper II, and Paper III. Progress in the treatment

of convective boundaries (Section 2) and element dif-

fusion (Section 3 and Appendix C) will improve stud-

ies of their impact on stellar evolution. Advances to

MESA in implicit hydrodynamics (Section 4), approxi-

mation of 3D RTI effects (Section 5), and coupling with

a public version of the STELLA radiative transfer instru-

ment will enhance the modeling of Type IIP SN light

curves from post-explosion to post-plateau (Section 6).

We integrate these improvements with an exploration

of PPISN and black hole formation models (Section 7).

We describe energy conservation in MESA and demon-

strate improvements relevant to WD cooling (Section

8). Upgrades to estimating the absolute magnitude of

a model in a chosen passband (Appendix A), guidance

on importing multi-dimensional models into MESA (Ap-

pendix B), and new MESA-based software tools (Section

D) will strengthen research and education. Input files

and related materials for all the figures are available at

http://mesastar.org.
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Figure 58. Magnitude of the energy differences between the HELM and PC EOS for specific internal energy e (left) and
entropy s (right) in a 50/50 C/O mixture. Dashed lines show the EOS blending boundaries for 10 ≤ Γ ≤ 20, and the solid black
lines show representative profiles for a 1.0 M� WD cooling from Teff = 26, 000 K to Teff = 17, 000 K.
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Figure 59. Percent difference between HELM and PC EOS for cP (left) and χT (right). Dashed lines show the EOS blending
boundaries for 10 ≤ Γ ≤ 20, and the hatched region in the right panel shows the previous default blending range 40 ≤ Γ ≤ 80.
The new EOS blending region disagree by only a few percent for these quantities.

iadis, Thomas Janka, Sam Jones, Alexandra Kozyreva,

Takashi Moriya, Marat Potashov, Eliot Quataert, Ken

Shen, Matt Turk, Michael Wiescher, and Matt Wood for

discussions. We also thank the participants of the 2016

and 2017 MESA Summer Schools for their willingness to

experiment with new capabilities, as well as Mitchell

Lachat and Jamie Lombardi for providing us with SPH

simulations of stellar mergers.

This project was supported by NSF under the Soft-

ware Infrastructure for Sustained Innovation (SI2)

program grants (ACI-1339581, ACI-1339600, ACI-

1339606, ACI-1663684, ACI-1663688, ACI-1663696),

and by NASA under the Theoretical and Computa-

tional Astrophysics Networks (TCAN) program grants

(NNX14AB53G, NNX14AB55G, NNX12AC72G). This

research is funded in part by the Gordon and Betty

Moore Foundation through Grant GBMF5076 and was

also supported at UCSB by the National Science Foun-

dation under grant PHY 11-25915. The work at Arizona

State University was also supported by the NSF under

grant PHY-1430152 for the Physics Frontier Center

“Joint Institute for Nuclear Astrophysics - Center for

the Evolution of the Elements” (JINA-CEE). Support

for this work was provided by NASA through Hubble

Fellowship grant # HST-HF2-51382.001-A awarded by

the Space Telescope Science Institute, which is oper-

ated by the Association of Universities for Research

in Astronomy, Inc., for NASA, under contract NAS5-



54

26555. This work used the Extreme Science and En-

gineering Discovery Environment (XSEDE), which is

supported by National Science Foundation grant num-

ber ACI-1548562; specifically the Comet cluster at the

San Diego Supercomputer Center (SDSC) through al-

location TG-AST150065. P.M. acknowledges support

from NSF grant AST-1517753 to Vassiliki Kalogera at

Northwestern University. A.T. is Research Associate

at the Belgian Scientific Research Fund (F.R.S-FNRS).

This research made extensive use of the SAO/NASA

Astrophysics Data System (ADS).

Software: crlibm (de Dinechin et al. 2007), sedov

(Kamm & Timmes 2007, http://cococubed.asu.

edu/research_pages/sedov.shtml), STARSMASHER

(Gaburov et al. 2010; Lombardi et al. 2011, https:

//jalombar.github.io/starsmasher/), Python avali-

able from python.org, matplotlib (Hunter 2007), NumPy

(van der Walt et al. 2011), ipython/jupyter (Pérez &
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APPENDIX

A. COLORS

We describe MESA’s implementation of bolometric corrections (BCs) for use in estimating the absolute magnitude

of a model in a user-chosen filter system. Note this is different than the colors reported by STELLA (Section 6), as

the colors module uses pre-computed tables of BCs while STELLA solves the radiative transfer equations on-the-fly

(Blinnikov et al. 1998).

The absolute bolometric magnitude (Mbol) of a star is defined, with reference to the solar absolute bolometric

magnitude, as (Torres 2010):

Mbol = Mbol,� − 2.5 log10 (L/L�) , (A1)

where Mbol,� is the absolute bolometric magnitude of the Sun, taken as 4.74 (2015 IAU Resolution B2). This can be

transformed into the pass band dependent absolute magnitude, MX , for a nominal pass band X, via

MX = Mbol − BCX , (A2)

BCX is the BC for pass band band X and accounts for the flux emitted outside of the wavelength range of the filter

system. The derivation of a BC requires an atmospheric model of a star such that a stellar spectrum can be computed

over all wavelengths, a computationally costly process. To prevent the requirement of actually having to generate a

spectra at each time-step, we make use of pre-computed BC tables. These define the BC as a function of the stellar

photosphere; Teff/K, log
(
g/cm s−2

)
and the metallicity [M/H], and are derived from pre-computed grids of stellar

atmosphere models, (see e.g., Kurucz 1970; Husser et al. 2013). Given the parameters at the stellar photosphere,

we interpolate each set of BCs over log (Teff/K), log
(
g/cm s−2

)
and [M/H] using linear interpolation over nearest

neighbors and without extrapolation for points outside of the table range.

We provide two sets of pre-processed tables of BCs, though a user may provide their own. From Lejeune et al. (1998)

we provide the Johnson-Cousins-Class bands UBVRcIcJHKLL′M. This table provides the BCs over the parameter range

2, 000 ≤ Teff/K ≤ 50, 000, −1.02 ≤ log
(
g/cm s−2

)
≤ 5.0 and −5.0 ≤ [M/H] ≤ 1.0, with a variable sampling rate.

Figure 60 shows the time evolution of the absolute magnitude of a 1 M� star with the pass bands defined in Lejeune et al.

(1998). We also provide a set of blackbody BCs for the pass bands UBVRcIc, over the range 100 ≤ Teff/K ≤ 50, 000

in steps of 100 K. As these are blackbody corrections there is no g or [M/H] dependence.

There are many other possibilities for other pass bands or classes of object (Fukugita et al. 1996; Girardi et al. 2002;

Bessell 2011; Bessell & Murphy 2012). Thus the tables we provide are not a definitive set, but merely a reasonable

starting point for modeling stellar objects. Other astrophysical objects like WDs, exoplanets, or SN light curves require

calculating specialized tables. Users may provide BC tables defined in terms of Teff/K, log
(
g/cm s−2

)
and [M/H].

B. MODEL RELAXATION

To simplify the process of importing a model into MESA, we have developed simple relaxation routines that allow the

construction of a starting model in hydrostatic equilibrium with specified profiles for composition, angular momentum,

and entropy. Examples that motivate importing a model into MESA include multi-dimensional simulations of stellar

mergers, common envelope evolution, and the effects of SN explosions on nearby companions.

http://cococubed.asu.edu/research_pages/sedov.shtml
http://cococubed.asu.edu/research_pages/sedov.shtml
https://jalombar.github.io/starsmasher/
https://jalombar.github.io/starsmasher/
https://www.python.org
http://mesa-web.asu.edu
http://mesa-web.asu.edu
https://doi.org/10.5281/zenodo.1002851
https://doi.org/10.5281/zenodo.846305
https://doi.org/10.5281/zenodo.846305
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Figure 60. Evolution of the absolute magnitude of a 1 M� star for the bolometric magnitude and magnitude in the filter bands
UBVRcIcJHKLL′M.

The relaxation process inputs include 1D profiles of composition and angular momentum. The process also requires

either an entropy profile or the profiles of pairs of values (ρ, T ), (Pgas, T ), or (ρ, e), from which MESA extracts the

entropy using the eos module. Note that in the case where the entropy is not provided directly, the relaxed model

will match the entropy computed by the eos module, but not neccesarily the input (ρ, T ), (Pgas, T ), or (ρ, e) profiles.

A good match for the input profiles depends on the input data corresponding to a model in hydrostatic equilibrium

computed with an EOS that is consistent with MESA’s.

Relaxation is done via pseudo-evolution of a stellar model for which mixing, angular momentum transport, and

changes in composition from nuclear burning are suppressed, while a quantity of interest is incrementally altered until

it reaches the desired value up to a pre-defined tolerance. Throughout this relaxation process, hydrostatic equilibrium

is enforced. The starting stellar model can be any MESA model with the required mass, and for most cases a ZAMS star

at Z = 0.02 works well. The first two steps in the relaxation of a model fix the composition and angular momentum

profiles. This is done by directly adjusting the variables for composition and angular momentum of each cell until

the desired values are reached. Since the entropy is a derived quantity in MESA, the third step relaxes the entropy

indirectly via the energy equation. This is achieved by adding a heating term that injects energy in regions where the

entropy is below the target value, and removes energy in regions where the entropy is above the target value. This

specific heating rate is

εrelax(m) =

(
1− s(m)

starget(m)

)
e(m)

τ
, (B3)

where e(m), s(m) and starget(m) are the specific internal energy, current entropy, and target entropy respectively at

the mass coordinate m. The timescale for the relaxation process is specified by τ . The value τ should be chosen to

be small enough that energy transport is negligible during the pseudo-evolution. In practice, τ can be chosen to be

orders of magnitude smaller than the dynamical timescale of the system.

We verified that using the entropy, composition, and angular momentum profiles of a model computed with MESA as

input, the relaxation procedure can reproduce the original model to within 0.1%. An example is provided in the test

suite under the name relax_composition_j_entropy.

We tested these relaxation routines using the outcome of a stellar merger computed with the STARSMASHER10 SPH

code (Gaburov et al. 2010; Lombardi et al. 2011), configured to use the MESA EOS. Two coeval non-rotating MESA

models with ZAMS masses of 20 M� and 15 M� are evolved until the 20 M� star reaches Xc = 0.34. These models

10 The STARSMASHER code is open source and freely available at https://jalombar.github.io/starsmasher/

https://jalombar.github.io/starsmasher/
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Figure 61. Mass-weighted spherical averages of radial velocity and density from the STARSMASHER simulation of a head-on
collision between non-rotating 20 M� and 15 M� stars. The dashed line shows the resulting density profile of a MESA model
relaxed to the entropy and composition profile of the simulation.

are then imported into STARSMASHER to simulate a head-on collision, such that the relative velocity of the two stars at

infinity is zero. We find that 2.18 M� of material is lost from the system due to the collision.

We compute spherical mass-weighted averages of the composition, ρ, and e. These profiles are input into the MESA

relaxation process, along with a zero angular momentum profile since the model is a head-on collision of non-rotating

stars. Figure 61 shows that the relaxed model closely follows the input smoothed particle hydrodynamic (SPH) merger

model in the central regions, though densities are ≈ 10% larger throughout the inner 25 M�. Density differences of

more than an order of magnitude are present in the outer layers. This is a consequence of these layers not being in

hydrostatic equilibrium in the input SPH simulation. The MESA relaxation process matches the entropy rather than

density profile of the SPH model assuming hydrostatic equilibrium as discussed above. The relaxed model corresponds

to the final configuration if it contracts adiabatically, which is a good approximation as velocities in the SPH model

are well below the local sound speed (Pan et al. 2013).

C. ELEMENT DIFFUSION IMPLEMENTATION DETAILS

This appendix provides implementation details not contained in Section 3. Equations (2)–(4) and (9) give the full

set of diffusion equations that must be solved to obtain diffusion velocities. For S total species in the plasma (including

electrons), Equation (9) provides S − 1 equations (one for each ion species), Equation (2) provides S equations (one

for each species including electrons), and Equations (3) and (4) each provide one additional equation, for a total of

2S + 1 independent equations. The 2S + 1 unknowns are S diffusion velocities ws, S heat flow vectors rs, and the

electric field E.

The inputs provided from the MESA model are the number densities ns, temperature T , gradients of each of these

quantities d lnns/dr and d lnT/dr, species mass in atomic units As, species mean charge as an average ionization state

Z̄s, and resistance coefficients Kst, zst, z
′
st, z

′′
st (defined in Equation 86 of Paper III). The coefficients are calculated

as described in Section 3.3. Together with the mean ionization states, these are the key pieces of input physics that

determine the diffusion of all ions. Extra acceleration terms grad,s for radiative levitation are either set to zero by

default, or calculated as in Hu et al. (2011) when the option to include radiative levitation is enabled.

In the spirit of Thoul et al. (1994), Equations (2)–(4) and (9) are grouped into a single matrix equation:

βrad,i + αimpg + νikBT
d lnT

dr
+ kBT

∑

j

γij
d lnnj

dr
=
∑

j

∆ijWj . (C4)

The vectors capturing the driving terms are

αi =




niAi i = 1, . . . , S − 1,

0 i = S, . . . , 2S + 1,
(C5)
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νi =





ni i = 1, . . . , S − 1,

5
2ni i = S, . . . , 2S − 1,

0 i = 2S, 2S + 1,

(C6)

γij =




niδij i = 1, . . . , S − 1,

0 i = S, . . . , 2S + 1,
(C7)

βrad,i =




−niAimpgrad,i i = 1, . . . , S − 1,

0 i = S, . . . , 2S + 1.
(C8)

The vector containing the unknowns is

Wj =





wj j = 1, . . . , S,

rj j = S + 1, . . . , 2S,

qeE j = 2S + 1.

(C9)

For i = 1, . . . , S − 1, the right hand side matrix of Equation (C4) is

∆ij =





−∑l 6=j Kil j = i,

Kij j = 1, . . . , S and j 6= i,
∑
l 6=j KilzilAl/(Ai +Al) j = i+ S,

−Ki,j−Szi,j−SAi/(Ai +Aj−S) j = S + 1, . . . , 2S and j 6= i+ S,

niZ̄i j = 2S + 1.

(C10)

For i = S, . . . , 2S − 1, the matrix terms are

∆ij =





5

2

∑

l 6=j
Ki−S,lzi−S,l

Al
Ai−S +Al

j = i− S,

−5

2
Ki−S,jzi−S,j

Aj
Ai−S +Aj

j = 1, . . . , S and j 6= i− S,

−
∑

l 6=j−S
Ki−S,l

[
3A2

i−S +A2
l z
′
i−S,l

(Ai−S +Al)2
+

4

5

Ai−SAl
(Ai−S +Al)2

z′′i−S,l

]

−2

5
Ki−S,i−Sz

′′
i−S,i−S





j = i,

Ki−S,j−S
Ai−SAj−S

(Ai−S +Aj−S)2

(
3 + z′i−S,j−S −

4

5
z′′i−S,j−S

)
j = S + 1, . . . , 2S and j 6= i,

0 j = 2S + 1.

(C11)

For i = 2S,

∆ij =




njAj j = 1, . . . , S,

0 j = S + 1, . . . , 2S + 1.
(C12)

For i = 2S + 1,

∆ij =




njZ̄j j = 1, . . . , S,

0 j = S + 1, . . . , 2S + 1.
(C13)

Indices i = 1 . . . S−1 capture the S−1 equations (9) for the ions. Indices i = S . . . 2S−1 capture the S equations (2).

Indices i = 2S, 2S + 1 capture the two constraints in Equations (3) and (4).
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For a generic driving term that takes the form of an extra force fs on ions of species s, a term −nsfs appears on

the left hand side of Equation (9). This can be accounted for in the matrix setup by adding another vector βf,i to the

left hand side of Equation (C4) with the form

βf,i =




−nifi i = 1, . . . , S − 1,

0 S, . . . , 2S + 1.
(C14)

One such extra driving force that may be explored with MESA in the future is Coulomb separation in dense matter

arising from non-ideal corrections for the ions (Chang et al. 2010; Beznogov & Yakovlev 2013; Diaw & Murillo 2016).

The diffusion velocities are separated into two terms capturing the distinct effects of gravitational settling and

ordinary diffusion in the tradition of Equation (11) of Iben & MacDonald (1985):

wi = wgi −
∑

j

σij
d lnCj

dr
, (C15)

where Cj ≡ nj/ne following the notation of Thoul et al. (1994). These separate terms are constructed by inverting

the matrix ∆ij and then solving Equation (C4) for just one of α, β, ν, and γ∗,j at a time on the left hand side. These

results can then be linearly combined to construct wgi and σij such that the the full sum in Equation (C15) gives a

solution that satisfies the complete set represented by Equation (C4).

When electrons become degenerate, we drop all S Equations (2) and set the S heat flow vectors to rs = 0. Equa-

tion (C4) then represents a system of just S+1 equations and the vectors and matrices simplify considerably, dropping

all entries for indices i = S . . . 2S − 1 or j = S + 1 . . . 2S in the definitions given in Equations (C5)–(C13). To avoid

discontinuities, we employ a blend that smoothly transitions between the diffusion velocity solutions over a range in

η ≡ µe/kBT , where µe is the electron chemical potential. By default, the blend is centered around η ≈ 1, with user

controls available to adjust the range of this blending region.

D. SOFTWARE INFRASTRUCTURE

Software is an integral enabler of observation, theory, and computation and a primary modality for realizing the

discoveries and innovations expressed, for example, in the astronomy and astrophysics decadal surveys (e.g., National

Research Council 1991, 2001, 2011). In this appendix we describe new software stacks at a variety of scales that

enhance the research and education infrastructure.

D.1. Not A Number

Not a Number (NaN) is a numeric data type representing an undefined or unrepresentable value (e.g., Goldberg

1991; Hauser 1996). Examples include 0/0 and
√
−1 in real arithmetic. In the IEEE 754 floating-point standard (IEEE

2008) there are two types of NaNs: quiet (qNaN) and signaling (sNaN). A qNaN propagates errors resulting from

invalid operations or values without triggering a floating point exception. An sNaN precipitates an invalid operation
exception whenever an attempt is made to use one as an arithmetic operand. The IEEE 754 standard requires qNaN

as the default, while an sNaN can be used to support features such as filling uninitialized memory or other extensions

to floating-point arithmetic.

NaN and infinity (INF) setting and testing routines are provided within the utils_nan.f90 file. A consistent set

of interfaces allows for initializing scalars/arrays to NaN values, and testing for qNaN, sNaN, or INF values. Interface

overloading allows handling of single, double or quad precision scalars or arrays of rank between 1 and 4. This

module provides four generic interfaces. Logical function is_nan(x,signal) returns true if x contains NaNs and false

otherwise. The optional logical argument signal determines whether qNaN, sNaN or both are tested for. Logical

function is_inf(x) returns true if x contains INFs and false otherwise. Logical function is_bad(x) returns true if x

contains NaN or INF values and false otherwise. Routine set_nan(x,signal) sets a scalar or array x to NaN values.

The optional logical argument signal determines whether a qNaN or sNaN is set.

The library framework of MESA is designed to be interoperable within other software ecosystems. For example, these

NaN and INF interfaces are of potential interest to users of MESA or developers of similar software instruments.

D.2. MESA-Web

Stellar evolution software instruments can be complicated to install and use, especially when the aim is primarily

pedagogical (e.g., high-school or undergraduate courses). Motivated by the community’s expressed need for a lower
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barrier to entry for education, a web-based interface to MESA was developed, MESA-Web at http://mesa-web.asu.edu.

MESA-Web currently allows choices for the initial mass, metallicity, rotation, mass loss, nuclear reaction network, custom

nuclear reactions rates, spatial and temporal resolution, and model output rate.

MESA-Web sends the user an email message when their job has completed that contains a URL of a zip file to

download. The unzipped output directory contains a MESA history data file holding the time evolution of 57 quantities,

as well as a series of MESA profile data files containing information on 56 quantities in each zone of the stellar model

at discrete model numbers. Also included in the output is an MP4 formatted video containing a plot dashboard of the

abundance profiles, Kippenhahn diagram, Hertzsprung-Russell Diagram, rotational profile, and temperature, density,

and pressure profiles.

MESA-Web is currently hosted on a 4-core server at Arizona State University and allows jobs to run on a single core

for 4 hours of walltime or until the model reaches iron core collapse. Launched in June 2015, MESA-Web has presently

served more than 3000 models to over 600 different users at over 40 academic institutions. Efforts to expand MESA-Web’s

capabilities include porting the service to a host with enhanced compute resources, simulating core-collapse supernova

explosions (see Paper III) and light curves (see Section 6), and binary star evolution (see Paper III).

D.3. MESA-Docker

Docker is a software technology designed to deploy and run applications by using “containers”. Containers provide

much of the virtualization power of traditional virtual machines while requiring far less resource overhead. This allows

efficient packaging of an entire operating environment, with all of the necessary libraries and other dependencies for a

large software tool such as MESA. The MESA-Docker package (Bauer & Farmer 2017) provides a solution that simplifies

the requirements for locally running a full MESA installation with all capabilities available, with only minor overhead

associated with running in a container. MESA-Docker will be useful for new users, students with educational projects,

and Windows operating system users.

D.4. pyMESA

pyMESA (Farmer 2017) allows embedding of MESA modules into Python projects. pyMESA currently supports using the

equation of state (eos), nuclear reaction (rates), neutrino (neu), atmosphere (atm), and opacity (kap) packages. This

software infrastructure will be useful for users who want to use parts of MESA in their own Python software projects.

As an example of these capabilities, Figures 58 and 59 were produced using the pyMESA eos interface to make direct

calls to the MESA EOS routines.

D.5. MESAstar Model Optimization

The MESAstar test suite contains a sample case that shows how to use the simplex optimization algorithm (Nelder

& Mead 1965) to find stellar models that minimize a specified χ2 by automatically adjusting a variety of control

parameters.11 The χ2 to be minimized can contain both pre-supplied and user-defined terms. Pre-supplied terms

include Teff , L, R, g, surface Z, surface Y , and age. An easy-to-use framework allows the user to define other terms to
include in the χ2. Control parameters include M , Z/X, Y , αMLT, and fov. Other stellar evolution parameters can be

easily added from the extensive set of controls in MESA. We provide a MESA test suite case using this new capability to

calibrate a solar model. This can serve as a template for users wishing to use this method to search for models that

match the observed properties of specific stars.

D.6. http://mesastar.org

Reproducibility is bedrock to scientific research. Provenance, as the term relates to software instruments (Van den

Bussche & Vianu 2001; Carata et al. 2014), is the ability to record the full history of a result. Scientific research

is generally held to be of good provenance when it is documented in detail sufficient to allow reproducibility. The

MESA project facilitates provenance by the research community in four ways. One, by curating public releases of the

source code, makefiles, test suite, and how the source code was compiled − GNU compilers are redistributed in the

MESA Software Development Kit (see Paper II) − at http://mesa.sourceforge.net. Two, by providing bit-for-bit

consistency for all results across all the supported platforms (see Paper III). Three, by supporting a user mailing-list

to openly share knowledge (see the Manifesto in Paper I). Currently, over 12,000 messages are archived and searchable.

11 This is the same simplex algorithm that is used for finding matches in asteroseismology applications using MESA (see Paper III, Section
3). The code reported here is a simplified subset of that tool and is now easier to use and adapt to new problems.

http://mesa-web.asu.edu
http://mesastar.org
http://mesa.sourceforge.net
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Four, by hosting a web-portal at http://mesastar.org to share MESA-oriented software contributions and reposit the

MESA files (inlist, run_star_extra.f, etc) that specify all the ingredients needed to reproduce a scientific result.

Currently, http://mesastar.org offers over 120 MESA-oriented software contributions and inlist repositories.

REFERENCES

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016a,

Physical Review Letters, 116, 061102

—. 2016b, ApJL, 818, L22

—. 2016c, PhRvL, 116, 241103

—. 2016d, ApJL, 832, L21

—. 2016e, ApJL, 833, L1

—. 2016f, ApJS, 227, 14

—. 2017a, ApJ, 839, 12

—. 2017b, PhRvL, 119, 141101

Althaus, L. G., & Benvenuto, O. G. 2000, MNRAS, 317,

952
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