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ABSTRACT

We are in the process of updating and extending the OPAL equation-of-state (EOS) and opacity data to
include low-mass stars. The EOS part of that effort now is complete, and the results are described herein. The
new data cover main-sequence stars having mass�0.1M�. As a result of the more extreme matter conditions
encountered with low-mass stars, we have added new physics. The electrons are now treated as relativistic,
and we have improved our treatment of molecules. We also consider the implications of the new results for
helioseismology.

Subject headings: atomic processes — equation of state — Sun: oscillations

1. INTRODUCTION

The OPAL equation-of-state (EOS; Rogers, Swenson, &
Iglesias 1996, hereafter RSI96) and opacity tables (Iglesias
& Rogers 1996) have frequently been used to model stars.
The temperature-density range of the RSI96 tables is suffi-
cient to study main-sequence stars having masses greater
than about 0.8M�. The thermodynamic properties of these
stars are those of a weakly coupled partially ionized plasma.
Nonideal corrections to the pressure never exceed about
10% for M � 0:8 M�. Nevertheless, simple models that
invoke heuristic arguments to cut off the divergence of the
atomic partition function and to approximate the size of the
nonideal plasma contribution can vary by several percent in
pressure and energy and substantially more in the thermo-
dynamic derivatives of the EOS. Discrepancies of this size
are far too large to analyze helioseismic data, which are
capable of estimating the sound speed to a few parts in 104

(Christensen-Dalsgaard et al. 1996). Similar EOS data are
also needed to model less massive stars, which are composed
of substantially more nonideal plasmas. Consequently, we
have undertaken an effort to extend the existing OPAL
database to include stars having M � 0:1 M�. Herein we
describe the EOS part of that effort.

In the Saha approach and its modifications the divergence
of the atomic partition function is removed by introducing
ad hoc criteria for screening bound states into the contin-
uum, resulting in unphysical discontinuities in the EOS.
This is a consequence of the fact that the Coulomb correla-
tion effects on the continuum states are ignored, except for a
partial contribution that enters through the Debye-Hückel
correction when it is included in the free energy. In recent
implementations of this approach these discontinuities in
the EOS are eliminated by introducing an occupation prob-
ability (reduced statistical weight), w, that a composite par-
ticle (i.e., ion, atom, molecule) finds itself in an environment
where the bound electrons are highly localized around a
single nucleus. The quantity 1� w is then the probability
that, as a result of interactions with nearby neighbors, the

bound electrons are in delocalized quasi-continuum states
(Däppen, Anderson, & Mihalas 1987; Hummer & Mihalas
1988; Mihalas, Däppen, & Hummer 1988; hereafter
MDH88). This is an intuitive approach whose success
depends on how well w is determined. Nevertheless, there is
no a priori theory for determining w or the quasi-continuum
state contribution. In contrast, the OPAL EOS and opacity
calculations are based on an activity expansion of the grand
canonical partition function. The starting point in this
approach is the Coulomb interactions between all the fun-
damental constituents, i.e., electrons and nuclei, in the sys-
tem. The effect of multiparticle Coulomb interactions on
bound states arises naturally, without the introduction of ad
hoc assertions. Consequently, the thermodynamic proper-
ties are continuous functions of temperature and density.
This method has been developed over a number of years
and is described elsewhere (Rogers 1981, 1986, 1994,
2001b).

As the stellar mass decreases toward the cutoff at the bot-
tom of the main sequence, the nonideal corrections to the
EOS increase substantially. Pressure ionization becomes
important for M < 0:3 M�. The inclusion of an increasing
number of terms in the activity expansion, after elimination
of the activity, results in a systematic expansion in the den-
sity. The order of expansion (Rogers 1981) used to calculate
the updated EOS tables should be accurate for stellar tracks
having M � 0:3 M� but starts to degrade for less massive
stars. It is difficult to give an estimate of the size of the errors
in the tabulated results. The Coulomb coupling parameter,

� ¼ Z2h i
kTa

e2 ; ð1Þ

where hZ2i is the average square charge and a is the iono-
sphere radius, never exceeds 1.5 along the M ¼ 0:3 M�
track but approaches 4.5 at some locations along the
M ¼ 0:1 M� track. The maximum error in the OPAL non-
ideal pressure calculations should be less than 5% at the
most nonideal parts of the M ¼ 0:3 M� track (Rogers &
Dewitt 1973; Rogers 1981). This translates into errors of
1%–2% in the total pressure. The size of the errors increases
somewhat for theM ¼ 0:1M� track but diminishes rapidly
with increasing mass forM > 0:3M�.

The EOS calculations reported herein include relativistic
electrons, new methods for treating neutral-neutral and
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neutral-plasma interactions, and an improved, but still
incomplete, treatment of molecules. These improvements
will be discussed in x 2. A discussion of the results and com-
parisons with other work will be given in x 3. The improved
calculations have some implications for helioseismology
that will be discussed in x 4.

2. NEW AND IMPROVED PHYSICS

2.1. Relativistic Electrons

The RSI96 tables cover a temperature-density range
where relativistic effects are small and so were not included.
This reasoning failed to consider the high accuracy of helio-
seismic data. Elliot & Kosovichev (1998, hereafter EK98)
showed that this missing physics is easily detected by helio-
seismic inversions of the solar oscillations. The largest effect
of relativity occurs in the ideal electron contribution to the
EOS. The relativistic Fermi integral is given by

Fkð�;TrÞ ¼
1

�ðk þ 1Þ

Z 1

0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðTrx=2Þ

p
ex�� þ 1

dx ; ð2Þ

where �ðk þ 1Þ is the gamma function, � ¼ l=kT , l is the
chemical potential, and Tr ¼ kT=mec2. Approximate
expressions for the relativistic Fermi integral exist in various
limits (Cox &Guili 1968). A number of quadrature methods
have been used for numerical calculation of Fkð�;TrÞ
(Sugar 1991; Aparico 1998; Gong et al. 2001c). In this work
we have used a four-point Gaussian quadrature method,
due to D. Harwood (1968, unpublished), that breaks the
integration range into 2n partitions. The parameter n is
sequentially increased until the desired level of accuracy is
obtained by comparison with the result for 2n�1 partitions.
The ideal relativistic electron pressure is given by

Pid
e ¼ 2kT

�3
e

F3=2 þ
5

4
TrF5=2

� �
; ð3Þ

where

�e ¼
2��h2

mekT

 !1:2

ð4Þ

is the electron thermal de Broglie wavelength. Equation (3)
replaces the degenerate nonrelativistic limit of this expres-
sion in equation (61) of Rogers (1981). The corresponding
effect on other thermodynamic properties is obtained from
a numerical solution of a multicomponent generalization of
equations (15) and (61) of that same paper. The electron
exchange integral is also modified in the relativistic regime.
We have used the expansion of Stolzmann & Blöcker (1996)
to calculate the relativistic correction to electron exchange.
We are not aware of relativistic generalizations of higher
order terms in the activity expansion. For these terms we
have simply replaced the nonrelativistic Fermi function by
Fkð�;TrÞ.

2.2. Improved Activity Expansion

The activity expansion works well for partially ionized
systems because the activity for species i,

zi ¼ ð2si þ 1Þ��3
i eui=kT ; ð5Þ

where si is the particle spin and �i is the thermal de Bro-
glie wavelength for particles of mass mi, involves the
chemical potential and is thus the natural expansion to
use for reacting systems. In contrast, the virial expansion
has poor convergence properties when material is parti-
ally ionized (Rogers & Dewitt 1973). At very low temper-
ature, where only atoms and molecules exist, the opposite
is true. In the intermediate range where neutral particles
and ions exist simultaneously, neither expansion works
very well. In the present work we use a method that com-
bines the best features of both expansions and is able to
handle all three regions with equal level of approximation
(Rogers 2001a).

2.3. Factorization of Cluster Coefficients
and Effective Potentials

The activity expansion used herein is developed in
terms of the fundamental particle activities (eq. [5]). The
lowest order term that will involve, for example, H2 mol-
ecules, thus comes from beepp, the fourth cluster coeffi-
cient for two electrons and two protons. The calculation
of beepp is in principle a four-body problem. In addition,
because of the long range of the Coulomb interaction,
beepp is divergent. The diagrammatic resummation techni-
ques used in the many-body activity expansion (Rogers
1981, 1994) replace the Coulomb interaction with the
screened Coulomb interaction, so that the cluster coeffi-
cients are well behaved. When the temperature is low
enough that both bound electrons are in 1s states, beepp
can be factored into a product of second cluster coeffi-
cients (Rogers & Dewitt 1973; Schlanges & Kremp 1982)
in the form ðbgepÞ2bHH, where bgep is the ground-state con-
tribution to the second cluster coefficient resulting from
electron-proton interactions and bHH is the second cluster
coefficient for H(1s)-H(1s) interactions. As a result of
their large mass compared to electrons, the H-H interac-
tions can be calculated in the adiabatic approximation,
giving rise to singlet and triplet potential energy curves
(interaction potentials). In general, the cluster coefficients
for other molecular interactions can also be factored into
products of second cluster coefficients. Ab initio calcula-
tions exist for most of the atomic and molecular potential
energy curves needed to calculate the EOS of a hydro-
gen-helium mixture that is both partially ionized and par-
tially dissociated. In addition to atoms and their ions we
have included H�, Hþ

2 , H2, Heþ2 , and HeH+ in the
updated EOS calculations. Figure 1 displays a number of
the potential energy curves used in the present work to
account for the interactions between these species. Addi-
tional potential energy curves (not displayed) used in
these calculations were p-H (Teller 1930), p-He+ (Kolos
& Peek 1976), He-Hþ

2 (Hopper 1980), and He-H2 (Shafer
& Gordon 1973). We consider static atom-atom interac-
tions between C, N, O, and Ne but do not consider any
molecular interactions. The electron-atom potentials
needed for these calculations were obtained from para-
metric potentials fitted to electron affinities or extrapo-
lated from isoelectronic sequence data as described in
Rogers (1988).

It is well known that the second cluster coefficient
between particles i and j can be obtained from the Beth-
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Uhlenbeck (1937) expression,

bij ¼ 21=2��3
ij

"X
nl

ð2l þ 1Þe�Enl=kT

þ
X
l

ð2l þ 1Þ
Z 1

0

dq
d�lðqÞ
dq

eq
2=2lij kT

#
; ð6Þ

where

��ij ¼ ð�h2=2lijkTÞ1=2 ð7Þ

is the thermal de Broglie wavelength in center-of-mass coor-
dinates, the Enl are bound states, the �l(q) are scattering
phase shifts for relative momentum q, and lij is the reduced
mass. It should be possible to generalize equation (6) to
molecular interactions. However, as a result of the extra
degrees of freedom associated with the vibrational-rota-
tional states, the molecular case is more complex and has
apparently never been worked out. We present arguments
below that give some insight into the form of the molecular
second cluster coefficient and are intended to motivate our
calculations for molecules.

The total cluster coefficient for the H(1s)-H(1s) electronic
configuration can be written in the form

bHH ¼ se
2se þ 1

bSHH þ se þ 1

2se þ 1
bTHH ; ð8Þ

where bSHH is the singlet contribution, bTHH is the triplet con-
tribution, and se is the electron spin. The singlet potential
has a deep attractive well (see Fig. 1) giving rise to numerous
vibrational-rotational states, while the triplet potential has
only a very shallow attractive well. The bound-state part of
bSHH involves sums over the vibrational-rotational quantum
numbers � and K. The form that the scattering-state contri-
bution takes is not so obvious. At low temperature, to sec-
ond order in the activity of hydrogen atoms, zH, the

pressure is given by

P

kT
¼ zH þ z2HbHH : ð9Þ

Since our starting point was a system of electrons and
nuclei, equation (9) is obviously the result of some theoreti-
cal development. We will give a summary below that
describes the procedure. Rogers (1974) showed that, in
order to obtain a systematic expansion in the density, it is
necessary to separate z2HbHH into its bound-state (bs) and
scattering-state (s) parts according to

z2HbHH ¼ z2Hb
bs
HH þ z2Hb

s
HH : ð10Þ

At low temperature the first term on the right-hand side (bs)
acts linear in the activity of H2 molecules, while the second
acts quadratic in the activity for H atoms. In general, the
cluster coefficient for N atoms is separated into N parts fol-
lowing a similar pattern. These terms are then reorganized
based on their effective power in the activity. This gives an
expression that selects the most important terms needed to
account for the species that exist at a given temperature and
density.

2.4. Divergences inMolecular Partition Functions

The H2 molecule has an infinite number of electronic
states of the type H(1s)-H(n, l) whose potential energy
curves converge in the limit of large n to the Hþ

2 ð2�gÞ poten-
tial curve (Sharp 1971). Consequently, the summation over
internal electronic states diverges similar to H atoms. For
high n the interacting electron is well outside the core of Hþ

2 ,
so that for an isolated system it is effectively bound to a uni-
tary point charge. The bound and scattering states of the
interacting electron are therefore hydrogenic. Furthermore,
the vibrational-rotational spectra of these highly excited
electronic states are virtually identical to those of Hþ

2 and
can be factored out. The contribution from the high-n elec-
tronic states to the partition function can therefore be
obtained from a summation similar to the bracketed part of
equation (6), both parts of which diverge in the isolated par-
ticle case. In the plasma, however, as a result of the expo-
nential screening of Coulomb interactions, these terms are
finite.

The states of the interacting electron relative to the Hþ
2

ground state can (in concept) be calculated from a parame-
terized spherically symmetric two-body potential that has a
short-range attractive term due to interactions with the core
and a long-range Coulomb tail. In the simple case in which
the screening length is large compared to the ionic core size,
the Coulomb tail of the parametric potential becomes expo-
nentially screened, while the core term is unaffected. To get
a crude approximation to the molecular component of beepp,
identified in the following by a prime, we assume that the
vibrational-rotational states are uncoupled from the inter-
acting electron, i.e., are the same as in Hþ

2 , for all electronic
states. This allows the cluster coefficient to be factored as
follows:

b0eepp ¼ 2��6
ep��

3
HHe

�E
Hþ
2
=kI

QðTÞ
�X

nl

ð2l þ 1Þe�Enl=kT

þ
X
l

ð2l þ 1Þ
Z 1

0

dq
d�lðqÞ
dq

e
q2=2l

eHþ
2
kT
�
; ð11Þ

Fig. 1.—Potential energy curves. H singlet (lower solid line; Kolos &
Wolniewicz 1965); H triplet (upper solid line); H-H2 (short-dashed line;
Partridge et al. 1993); H2-H2 (long-dashed line; Diep & Johnson 2000); He-
He (solid line with circles; Cvetko et al. 1994); H-He (dot-dashed line; Tang
&Yang 1990; Cvetko et al. 1994).
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where the ��ij are given by equation (7), EHþ
2
is the binding

energy of Hþ
2 relative to an isolated electron and two pro-

tons, and Q(T) is the vibrational-rotational partition func-
tion of Hþ

2 . The bound-state energies, Enl, and phase shifts,
�l(q), can be calculated from the parametric potential. Equa-
tion (11) should give the correct high-T result for b0eepp. As
n ! 1, the vibrational-rotational spectrum will change
appreciably and the scattering states will also be modified.
As a result, the simple two-body potential picture is no lon-
ger realistic. It may be possible to use perturbation theory to
account for these modifications. The main corrections will
likely come from the vibrational-rotational states. Since
these have already been accurately calculated (Waech &
Bernstein 1967) and measured (Drabowski 1984), these cor-
rections can easily be made.

2.5. Similarities in Atomic andMolecular
Partition Functions

The reactions eþ p $ H and eþHþ
2 $ H2 are similar in

that two ions of opposite charge combine to form a neutral.
In the case of H, after some expansion and reorganization
of terms in the activity series (Rogers 1981, 1994), the sum-
mation over the ring diagrams and more complex ringlike
diagrams gives a contribution /ðZ � 1Þ2zH in the Debye-
Hückel Coulomb interaction term (see eq. [44] of Rogers
1974). Thus, the net ring-sum contribution from e-e, e-p,
and p-p interactions is zero when the charges are symmetric.
This differs significantly from the Saha equation. By consid-
ering only the electron-proton excited bound-state contri-
bution, it fails to capture this cancellation. When the de
Broglie wavelength is similar in size to the screening length,
quantum diffraction effects modify the electron distribution
and the ring-sum cancellation is no longer complete. Higher
order interaction terms that sample the potential at shorter
distances likewise do not show a strong cancellation.

An important outcome of the expansion and reorganiza-
tion of the activity series is that the low-lying bound states
that appear in the calculations are unscreened. This is a con-
sequence of regrouping terms in the basic electron-nuclei
activity expansion to define new variables that optimize the
convergence of the expansion at temperatures where com-
posite particles form. The primary function of the original
expansion is to obtain a global set of terms that are conver-
gent. It is then possible to expand and regroup these terms
into a more useful form.

Similar to the two-component ring sum for electrons and
protons, there will be some cancellation between the e-e, e-
Hþ

2 , and Hþ
2 -H

þ
2 interactions. In the electron-proton case,

the ring-diagrammatic summation, which results in the
Debye-Hückel correction, includes part of the bound-state
sum (Rogers 1979, 1986). The overt bound-state contribu-
tion to bep, which follows from the analytic properties of the
phase shifts in equation (6), is given by

boep ¼ 21=2��3
epZPL ; ð12Þ

where

ZPL ¼
X
nl

ð2l þ 1Þ e�Enl=kT � 1þ Enl

kT

� �
ð13Þ

is the Planck-Larkin partition function (Larkin 1960;
Rogers & Dewitt 1973; Rogers 1977; Bollé 1987, 1989;
Pisano & McKellar 1989). The sum ZPL is the residue after

the divergent terms in the high-temperature expansion are
separated out, effectively truncating the sum at Enlj j � kT .
The subtractions from the Boltzmann factors in equation
(13) in no way suggest that they are being discarded or can-
celled by the electron-proton phase shift sum in equation
(6). Instead, these divergent sums are subsumed in the dia-
grammatic many-body resummation. The product zezpb

o
ep is

the second-order e-p bound-state contribution to P/kT. At
low density and temperature this factor acts linear in the
activity of hydrogen atoms, while the leading plasma correc-
tion, i.e., Debye-Hückel, is 3/2 order in the activity and thus
much smaller. It is in this sense that ZPL represents the
bound-state contribution to the EOS. Of course, the occu-
pation numbers are still determined from Boltzmann factors
and are obtained through an ancillary calculation (Rogers
1986).

From the above arguments, we expect the contribution
from the highly excited electronic bound states and the scat-
tering states of H2 to be offset by the contribution from e-e
and Hþ

2 -H
þ
2 scattering. The effective bound-state contribu-

tion from these states will be given by Planck-Larkin factors
similar to equation (13). Their contribution to the EOS is
very small and has been neglected in these calculations.
Without a more complete treatment of the scattering phase
shifts, the form of the contribution from lowly excited elec-
tronic states is less clear. Arguments presented in Rogers
(1977, 1979) suggest that, in general, the divergent terms in
the high-temperature expansion of the bound-state part of
the unscreened cluster coefficients should be separated out
and incorporated into the many-body calculations. In the
case of H2, the vibrational-rotational partition function is
well behaved at high temperature, while the sum over elec-
tronic bound states diverges. Based on these properties, we
conjecture that the overt bound-state part of b0eepp will have
a form similar to the following:

b0oeepp ¼ 2��6
ep��

3
HHe

�E
Hþ
2
=ktX

nl

QnlðTÞ e�Enl=kT � 1þ Enl

kT

� �
;

ð14Þ

where the Qnl(T) are the vibrational-rotational partition
functions for the H(1s)-H(n, l) potential energy curves.
Whether this is the rigorously correct way to define the overt
bound-state contribution will depend on a careful treatment
of the analytic properties of the phase shifts. In a complete
calculation that includes all orders of approximation, this is
a mute point. In that case it is just a matter of bookkeeping.
What is improperly removed one place will reappear some-
where else. Since molecules only form in substantial num-
bers at temperatures below 2 eV, the subtractions from the
Boltzmann factors in equation (14) will have little effect on
themolecular EOS. For practical calculations we can reduce
equation (14) to the form

b0oeepp ¼ bgepð Þ2boHH ; ð15Þ

where

bgep ¼ 21=2��3
epe

�E1s=kT ; ð16Þ

boHH ¼ 21=2��3
HHe

�EH2
=kTQ1;0ðTÞ ; ð17Þ

and EH2
is the binding energy of H2 molecules relative to H

atoms. In the current calculations we have used the fit to
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Q1;0ðTÞ of the Drabowski (1984) vibrational-rotational data
due to Irwin (1981, 1987, 1988). The fourth-order contribu-
tion to P/kT coming from equation (15) is z2ez2pðbgepÞ2boHH.
Identifying zezpb

g
ep as zH, the activity for H atoms gives

the factor z2Hb
0
HH. This corresponds to the bound part of

equation (11).
In principle the scattering-state contribution to bHH

should be calculated quantum mechanically as indicated in
equation (11). However, the main scattering contribution
comes from bTHH, which is strongly repulsive and can be cal-
culated semiclassically from the Wigner-Kirkwood expan-
sion. In the present calculations, as a result of the relatively
high temperature, we have used only the classical limit of
this expansion. The attractive and repulsive parts of the sin-
glet potential affect the phase in different directions. When
the temperature is high enough that scattering from the
potential wall is the larger effect, a semiclassical calculation
of the repulsive contribution should provide an estimate of
the maximum size of the singlet scattering contribution. The
size of the scattering contribution, bS;sHH, calculated this way
is substantially smaller than bTHH, so that the sum of these
two terms,

bSHH ¼ bS;sHH þ bTHH ; ð18Þ

is a reasonable estimate of the total scattering-state contri-
bution in equation (8). Following arguments similar to
those above, we find that the H-H scattering contribution
from z2ez2pbeepp is given by z2Hb

s
HH. When the temperature is

low enough that there is no appreciable ionization, the pres-
sure to second order in the hydrogen activity reduces to the
form

P

kT
¼ zH þ z2H boHH þ bsHHð Þ : ð19Þ

The activity is eliminated in the usual manner through the
relation

�H ¼ zH
@

@zH

P

kT
: ð20Þ

In this example for pure hydrogen we have started from an
activity expansion for an electron-nucleus system and
arrived at equations (19) and (20). The virtue of the reorgan-
ization we have described is that it will select out the most
important contributions to the EOS at arbitrary tempera-
ture and density.

In general, the issues discussed above will be the same for
any molecule that has a positive molecular ion. Molecular
ions, such as Hþ

2 , generally have strong bonding orbitals in
only the ground-state configuration and thus have conver-
gent electronic partition functions. For these ions, the anal-
ysis leading to equation (15) is unnecessary, and the
calculations are the same as for ordinary short-range inter-
actions. This is because the reaction pþH $ Hþ

2 has no
effect on the total ionic charge.

2.6. Effect of Vibronic Excitations

In typical applications the temperature is low enough that
only the lowest vibronic states are occupied. The current
calculations span a wide range of temperature, so that at
high enough temperatures the full spectrum of vibronic
states can be excited. The hRi of molecular states increases
as the vibronic frequency, �, of the state increases. Conse-

quently, the interaction potential between molecules in
excited vibronic states is weaker than when they are in their
ground states. We have used calculations by T. N. Rescigno
(2000, unpublished) to account for the effect of vibronic
excitation on the H2-H2 and p-H2 interaction potentials.
These are the dominant molecular interactions in stars. Sim-
ilar calculations are not available for other molecules.

When ionsphere radius is comparable to the molecular
size, density effects on the core must be considered. Fortu-
nately, the updated OPAL EOS tables do not get into this
region for molecules. How density effects are handled for
atomic and ionic states is described in Rogers (2001a and
references therein).

3. RESULTS

The composition of stellar material is generally described
in terms of just three variables, X, the hydrogen mass frac-
tion, Y, the helium mass fraction, and Z, the mass fraction
of all elements heavier than helium, known as the metallic-
ity, so that X þ Y þ Z ¼ 1. Following RSI96, we have
tabulated data for X ¼ 0, 0.2, 0.4, 0.6, and 0.8 and for
Z ¼ 0:00, 0.02, and 0.04. Data for X ¼ 1:0 have also been
tabulated, so that the database for H-He mixtures spans the
range from pure hydrogen to pure helium. The total contri-
bution to the EOS from heavy elements (herein all elements
heavier than helium) is at most a few percent and largely
dominated by period II elements. In order to calculate accu-
rate numerical derivatives of the EOS, a very fine grid of
temperature-density data is required. Since OPAL solves
directly a coupled set of activity equations for all the ele-
ments in the mixture, the inclusion of elements heavier than
Ne greatly increases the computer requirements. Accord-
ingly, RSI96 truncated the number of elements in the Gre-
vesse et al. (1991) solar abundances by adding the
abundance of elements heavier than Ne to Ne. The frac-
tional abundances for the resulting six-element mixture are
given in Table 1 of RSI96. The grid density of the EOS
tables is sufficient to give interpolated values in X, Y, Z, �,
and T that are generally accurate to 0.01%, but larger errors
can occur in the pressure ionization regime. Calculations of
the solar EOS for a fixed metallicity with a six-element mix-
ture reduced from Grevesse & Sauval (1998) do not affect
the results to the number of significant digits of the tables.

The temperature-density ranges of the old and new EOS
tables are shown in Figure 2. Also shown in Figure 2 are
tracks for stars with masses of 0, 0.3, and 1 M�. The two
lower mass tracks were largely outside the temperature-
density range of the RSI96 tables but are completely within
the range of the new tables. We have tabulated P, E, S, and
the following thermodynamic derivatives:

�T ¼ @ lnP

@ lnT

� �
�

; �� ¼
@ lnP

@ ln �

� �
T

; ð21Þ

�1 ¼
@ lnP

@ ln �

� �
S

;
�2

�2 � 1
¼ @ lnP

@ lnT

� �
S

; ð22Þ

�3 � 1 ¼ @ lnT

@ ln �

� �
S

; CV ¼ @E

@T

� �
V

: ð23Þ

RSI96 also tabulated ð@E=@�ÞT . We have not included this
derivative since it can be obtained from the thermodynamic
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relation ð@E=@�ÞT ¼ ðlmP=�2Þð1� �TÞ, where lm is the
mean molecular weight.

Some representative results from the EOS tables are
shown in Figures 3–5. Figure 3 shows logE versus logT for
various values ofX, along an isochore having density 0.0237
g cm�3. The curvature at low T is the signature for the for-
mation of atoms and molecules. Figure 4 shows the depend-
ence of C1 on temperature for various values of X along an
isochore with density 0.0056 g cm�3. The dip in C1 around
logT ¼ 5:0 results from the formation of He+, the dip
around logT ¼ 4:5 is due to the formation of neutral He,
and the dip around logT ¼ 3:7 is due to the formation of

hydrogen. The small dip in C1 around logT ¼ 6 is due to
the formation of heavy ions and atoms. This will be dis-
cussed further in x 4. Molecules are beginning to form at the
lowest values of T, causing the slight softening of the curva-
ture. Figure 5 showsC�/Nk versus � along several isotherms
with X ¼ 0:6 and Z ¼ 0:02. Here again the oscillatory
behavior can be related to changing ionization balance as a
function of density. The Z ¼ 0 and Z ¼ 0:04 specific heat
curves (not shown) look very similar to theZ ¼ 0:02 curves.

Recent stellar model calculations for low-mass stars have
generally used the MDH88 or the Saumon–Chabrier–
Van Horn EOS (Saumon & Chabrier 1991, 1992; Saumon,

Fig. 2.—Temperature-density range of the EOS tables: range of old
tables (light-shaded region); range of new tables (heavy-shaded region);
M ¼ 1:0M� track (short-dashed line);M ¼ 0:3M� track (long-dashed line);
M ¼ 0:1M� track (dot-dashed line).

Fig. 3.—Energy vs. temperature for several values of X, zero metallicity,
and density ¼ 0:0237 g cm�3: X ¼ 0 (solid line); X ¼ 0:2 (dotted line);
X ¼ 0:4 (short-dashed line);X ¼ 0:6 (long-dashed line);X ¼ 0:8 (dot-dashed
line);X ¼ 1:0 (squares).

Fig. 4.—C1 vs. temperature at several values of X, zero metallicity, and
density ¼ 0:056 g cm�3: X ¼ 0 (solid line); X ¼ 0:2 (dotted line); X ¼ 0:4
(short-dashed line); X ¼ 0:6 (long-dashed line); X ¼ 0:8 (dot-dashed line);
X ¼ 1:0 (open diamonds).

Fig. 5.—Specific heat at constant volume vs. density along several iso-
therms: T ¼ 108 (solid line); T ¼ 1:35� 106 (dotted line); T ¼ 7:75� 104

(short-dashed line); T ¼ 1:95� 104 (long-dashed line); T ¼ 5:88� 103 (dot-
dashed line); T ¼ 2:12� 10�3 (diamonds).
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Chabrierr, & Van Horn 1995, hereafter SCVH95). The
SCVH95 calculations are based on an occupation probabil-
ity approach similar to MDH88. To account for interac-
tions between atoms and the molecules, SCVH95 use
realistic interaction potentials adjusted to reproduce experi-
mental shock data, whereas MDH88 use a parameterized
hard sphere model. To account for strong Coulomb cou-
pling, SCVH95 use a screened one-component plasma
model. MDH88 use the Debye-Hückel approximation to
treat the Coulomb correction. This term becomes much too
large when � > 0:5. To correct for this, they introduce a
hard sphere cutoff to limit the distance of closest approach.
The MDH88 and SCVH95 calculations are both being
updated. One of the main improvements is in the way the
occupation probability factors, w, are calculated in the
Stark microfield (Potekhin, Chabrier, & Gilles 2002).
SCVH95 consider only H-Hemixtures, and thus their calcu-
lations are not suited to the study of seismic data.

The ratio of the OPAL pressure to the SCVH95 pressure
versus temperature for 0.3 and 0.1M� stars is shown in
Figure 6. The solar model used to calculate the temperature
is described in Chabier & Baraffe (1997). The differences for
M ¼ 0:3 M� are less than 6%, while the differences for
M ¼ 0:1M� are as large as 20%. The increasing discrepancy
with decreased stellar mass is due mainly to differences in
the treatment of pressure ionization and Coulomb interac-
tions. Both of these effects increase asM decreases. Figure 7
compares the OPAL and SCVH95 C1 for a 0.1M� star hav-
ing X ¼ 0:725 and Y ¼ 0:275. The noise around
logT ¼ 4:7 is apparently due to the stellar model calcula-
tion used by SCVH95, since OPAL calculations for the 0.1
M� attack from VandenBerg et al. (2000) are smooth. The
OPAL EOS and opacity data are available on the World
WideWeb.3

4. HELIOSEISMOLOGY

Experimental measurements of the thermodynamic prop-
erties of materials heated to stellar interior conditions are
very limited. The extant measurements utilize various meth-
ods for generating intense shock waves in a sample material.
The EOS is then obtained through the Rankine-Hugoniot
relations. The shock measurements are mainly limited to the
low-temperature end of tracks of low-mass stars and giant
planets. The error bars can be substantial. Fortunately, in
the special case of the Sun, the seismic data provide very
detailed information on the solar interior and indirectly the
EOS. The determination of internal structure relies on a
very accurate measurement of the solar oscillation frequen-
cies and a solar model whose theoretical frequencies are
very close to those of the Sun. In this approach detailed
measurements of the oscillation frequencies are inverted to
calculate the difference, �C1(r/R), between the Sun and a
standard reference model. The smaller the magnitude of
�C1(r/R), the greater the confidence in the solar model.
Because of the high accuracy of the observational data, the
functional form of �C1(r/R) can suggest where the model
needs to be improved. The calculation of solar structure
depends on a number of things, such as models for convec-
tion and particle diffusion, nuclear reaction rates, opacity,
and EOS. In principle, there are magnetic field perturba-
tions of the oscillation frequencies and turbulence effects
near the bottom of the convection zone, but in most studies
they are neglected.

EK98 have given an excellent example of seismic data
being able to detect shortcomings in the EOS theory. They
were concerned with why the inferred �C1 obtained from
inversions based on model S of Christensen-Dalsgaard et al.
(1996) diverge away from zero as r=R ! 0 (Dziembowski,
Pamyatnykh, & Sienkiewicz 1992; Antia & Basu 1994).
They were able to demonstrate that this divergence was due
to a small relativistic effect not included in the EOS calcula-
tions. Since kT/mec

2 is only 0.029 at the solar center, this
correction was not included in the MDH88 and OPAL EOS

3 See http://www-phys.llnl.gov/Research/OPAL/index.html.

Fig. 6.—Ratio of OPAL to SCVH95 pressure vs. temperature along
solar tracks calculated by Chabrier (Chabrier & Baraffe 1997): M ¼ 0:3
M� (dot-dashed line);M ¼ 0:1M� (solid line ).

Fig. 7.—Comparison of OPAL and SCVH95 C1 vs. logT for M ¼ 0:1
M�: SCVH95 for Chabrier solar track (dotted line); OPAL for Chabrier
track (solid line); OPAL for VandenBerg track (dot-dashed line).
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calculations. These effects have recently been included in the
free electron contribution to the MDH88 calculations
(Gong, Däppen, & Zejda 2001b). In general, the reason for
the discrepancy between theory and observation is not so
clear. Significant discrepancies (compared to the accuracy
of the seismic data) between the Sun and the theoretical
models are also present in the near-surface regions
(r=R > 0:97) and near the base of the convection zone, the
sources of which are still being investigated.

The total �C1(r) between the Sun and the present calcula-
tions is composed of a direct part resulting from the change
in the EOS and an implicit part resulting from a modifica-
tion of the theoretical oscillation frequencies of the solar
model. In the following, since only the EOS has changed, we
follow EK98 and consider only the direct contribution so
that

��1 ¼ ��old
1 þ �new

1 � �old
1

� �
¼ �new

1 � �Sun
1 ; ð24Þ

where ��old
1 is the inferred �C1 from EK98 based on the

RSI96 EOS.
Figure 8 compares the new �C1(r/R) with the nonrelativ-

istic �C1(r/R) used in the EK98 calculations. The flattening
of �C1 compared to RSI96 for r=R < 0:5 is due to relativistic
effects (see Fig. 2 of EK98). The error bars imposed on the
new result indicate the estimated size of the errors resulting
from inversion of the seismic data. The somewhat larger dis-
crepancy for r=R > 0:97 present in the earlier calculations is
little changed in the new calculations.

Gong, Däppen, & Nayfonov (2001a) carried out an
extensive investigation of the effect of heavy elements on
C1. They found that elements heavier than Ne affect the
value of C1 by at most 3� 10�4. In the present work we
found the still small but slightly larger value of 5� 10�4

at temperatures around 2� 106. Differences elsewhere
were typically at most 1� 10�4 (see Fig. 13). At the
current level of discrepancy between the Sun and EOS
models, the reduction to six elements is adequate. Gong
et al. (2001a) also give extensive comparisons between
MDH88 and OPAL.

In the near-surface region the MDH88 �C1 discrepancy
with the Sun is somewhat smaller than OPAL (see Fig. 3 of
EK98). It has been suggested that a large part of the discrep-
ancy may lie in the different treatments of excited states
between MDH88 and OPAL (Nayfonov & Däppen 1998;
Basu, Däppen, &Nayfonov 1999; Gong et al. 2001a). Look-
ing for other possibilities, we note that the shapes of the dis-
crepancy between MDH and OPAL with the Sun are
qualitatively similar, indicating that the primary source of
the discrepancy may be the same in both cases. This could
indicate some shortcoming in the EOS theory, but it could
also point to shortcomings in the stellar structure calcula-
tions. Approximations in the modeling of convection, tur-
bulence, diffusion, etc., in the solar model could produce a
T(r/R) and �(r/R) that are slightly different than the intrin-
sic solar values.

We expect C1 to be most sensitive to changes in tempera-
ture. Consequently, some theoretical inaccuracy in T(r/R)
could affect the calculated value of C1(r/R). Figure 9 shows
the sensitivity of �C1 to reductions in temperature along the
model S track of 1% and 3%. This change has a substantial
effect in the middle of the He ionization around r=R ¼ 0:98
but only a small effect elsewhere. Clearly any physics modifi-
cation that could affect T(r/R) by a few percent in the
40,000–70,000 K region would produce discrepancies of the
size reported.

In recent years the estimated value of Y in the convection
zone has fluctuated between about 0.23 and 0.26, with a cur-
rent estimate of 0.245 obtained from inversions using model
S. Figure 10 shows the sensitivity of �C1 to changes in Y. A
4% increase inY to 0.255 would considerably reduce the dis-
crepancy with the Sun in the 0:94 � r=R � 0:975 region,
whereas an 8% increase to 0.265 is tending toward increased
discrepancies. A combination of physics improvements that
affect the temperature and a modification of Y could also
explain the discrepancies.We present these sensitivity exam-
ples as a basis for further investigation.

The metallicity of the Sun as a function of depth is also
uncertain. Its value at the solar surface can be determined
from spectrographic observations. It is often assumed that

Fig. 8.—Sun-OPAL �C1 vs. r/R: RSI96 (solid line); updatedOPAL (open
circles). Error bars are taken from the EK98 inversion of seismic data.

Fig. 9.—Sensitivity of �C1 to changes in temperature. Model S solar
track temperatures (solid line): model S temperatures reduced by 1% (dotted
line) and 3% (dot-dashed line).
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the heavy-element mass content and the relative abundance
of the elements that comprise Z are the same at all depths.
Nevertheless, gravitational settling and radiative diffusion
can lead to variations in both Z and its composition as a
function of depth. Recent calculations (Bahcall & Pinson-
neault 1995; Turcotte & Christensen-Dalsgaard 1998; Tur-
cotte et al. 1998) find this to be a relatively small effect for
CNO, the primary heavy-element contributors to C1. Abun-
dance changes as a result of these processes are typically less
than 10%.

We note that helioseismic observations may be able to
predict Z and its variation with depth. This is suggested by
Figure 11, which shows C1 versus T along a solar track for
three metallicities: zero, solar, and twice solar, keeping X
fixed at its value along the model S track. The zero-metallic-

ity C1 shows a slight minimum around T ¼ 2� 106 K, cor-
responding to the region where the radiation correction
gives the largest reduction in C1. The solar and twice-solar
metallicity curves display an increasing minimum around
T ¼ 1:5� 106 K, as a result of multiple ionization of heavy
elements. There is a second depression around T ¼ 105 K
related to helium ionization. In this case the depression
decreases with increasing Z. This is due to the reduced
amount of He available to create the depression as metallic-
ity increases at the expense of He. The shape of C1 as a func-
tion of depth thus displays a clear signature of the
metallicity. Because of the low metallicity in the Sun, this is
a small effect. Nevertheless, because of the high accuracy of
the observational data, it can be tested.

Figure 12 compares the inferred C1 obtained from the
current EOS calculations (eq. [24]) with the zero, solar, and
twice-solar metallicity curves in the range of the high-tem-
perature depression. The agreement with the solar metallic-
ity curve is quite good down to r/R around 0.85. With
increasing depth, this is followed by a transition to the
twice-solar metallicity curves as the bottom of the convec-
tion zone is approached. For greater depths the inferred C1

is quite close to the twice-solar metallicity curve. The impli-
cations of this are unclear. It may simply be that the
neglected corrections to equation (24) are significant.
Turck-Chieze (1998) has presented evidence that the abun-
dance of CNO may need to be increased by about 15%.
Increasing the CNO abundances could provide a partial
answer to the discrepancy. On the other hand, Fukugita &
Hata (1998) find that metallicity increases greater than 40%
in the solar core (r=R < 0:25) are incompatible with solar
neutrino experiments. It is interesting to note that the condi-
tions around r=R ¼ 0:71 are of no special significance to the
EOS, whereas it is a very special location in the Sun, sepa-
rating the radiation zone from the convection zone.
Whether this is merely a coincidence or points to some
shortcoming in the solar model and/or calculation of �C1

awaits further investigation.

Fig. 10.—Sensitivity of �C to increases in helium abundance along the
model S track. Y is varied at the expense of X for fixed Z: no enhancement
(solid line); 4% enhancement in value of Y (dotted line); 8% enhancement
(dot-dashed line).

Fig. 11.—Solar C1 vs. T with X fixed at model S value. Z is varied at the
expense of Y: zero metallicity (solid line); solar metallicity (dotted line);
twice-solar metallicity (dot-dashed line).

Fig. 12.—Solar C1 vs. r/R for several metallicities compared to the
inferred C1 obtained from eq. (24) with the new opal EOS: zero metallicity
(solid line); solar metallicity (dotted line); twice-solar metallicity (dot-dashed
line); inferred C1 (open circles). Approximated error bars related to the
inversion are represented by the size of the circles.
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There is remarkable agreement between the inferred C1

and the three metallicity curves for r=R < 0:35. In the inner
region the heavy elements are nearly completely ionized and
thus C1 is not sensitive to metallicity. In the ideal case that
the observations, the input physics, and the solar model are
all accurately known, leaving the metallicity as the only free
parameter, it should be possible, for the region above
r=R > 0:35, to estimate the metallicity as a function of depth
by an iterative procedure.

In the present work we have calculated EOS tables based
on a six-element mixture truncated from the Grevesse et al.
(1991) solar abundances. In order to test whether interpola-
tion in the data tables or the truncation of the Grevesse et
al. (1991) abundances to a six-element mixture significantly
affects the comparison in Figure 11, we have done calcula-
tions with input taken directly from the model S data set,
both for the six-element mixture and a 14-element mixture
reduced from the same abundances (see Table 1 of Iglesias,
Rogers, &Wilson 1992). Figure 13 compares the differences
in �C1 (eq. [24]) between the truncated six-element mixture
and the 14-element mixture. The differences are quite small
except in the vicinity of r=R ¼ 0:92, where the temperature
is around 106 K. This is due to the multiple ionization of
heavy elements. Some small differences (not shown in the
figure) also occur near the surface. The interpolated six-
element �C1 agrees with direct evaluation to within 0.01%.

5. DISCUSSION

We have reported herein on updated and expanded
OPAL EOS tables. These tables replace the 1996 version of
RSI96. The RSI96 tables only cover a temperature-density
range suitable for modeling stars more massive than about
0.8 M�, whereas the new tables are suitable for stars more
massive than about 0.1 M�. The differences compared to

RSI96 are small except at high temperature and density
where relativistic effects not included in RSI96 make a dif-
ference. The new tables go down to 2000 K, whereas the
RSI96 tables did not go below 5000 K. As a result, atoms
and molecules play a more important role. At temperature-
density conditions where neutrals and ions exist simultane-
ously, this causes convergence problems for the activity
expansion. These convergence problems were handled by
developing a hybrid expansion that combines the best fea-
tures of the activity and virial expansions. Another problem
that arises in connection with molecules is how to handle
the long-range interactions between molecular ions and
other ionic species and the divergence of certain molecular
partition functions. We were not able to give rigorous solu-
tions to these issues. However, we were able to draw on
analogies with the atomic case to arrive at reasonable
approximations.

Because of the low metallicity of main-sequence stars, the
correction to the H-He EOS is only a few percent, due
mostly to period II elements. Nevertheless, there are appli-
cations where differences of this size are significant; this is
especially true in the analysis of seismic data. In most other
EOS calculations individual element tables are calculated
and mixed using ideal gas relations. OPAL numerically sol-
ves a fully coupled set of activity equations. This distinction
can be important in opacity calculations since a careful
treatment of the coupling between unlike species can affect
the occupation numbers. For the EOS calculations reported
herein we have again assumed a six-element mixture com-
posed of H, He, C, N, O, andNe.

Helioseismology is a very important tool for constraining
theories of the solar interior (Bahcall et al. 1997; Basu,
Pinsonneault, & Bahcall, 2000; Bahcall, Pinsonneault, &
Basu 2001) and has been used to rule out a number of mech-
anisms proposed to explain the missing neutrinos. When
discrepancies arise between seismic observations and theo-
retical models, it is very important to try to isolate the
source of the discrepancy, since it could point to some short-
coming in the solar model. There have been small but persis-
tent differences between the inferred solar C1 and EOS
theories. In order to stimulate studies to determine the
source of these discrepancies, we have presented some sensi-
tivity calculations.We have also suggested that a small effect
on the shape C1, due to the multiple ionization of heavy ele-
ments in the vicinity of the bottom of the convection zone,
can be used to determine the metallicity in this region.

We are grateful to Werner Däppen and Hugh Dewitt for
numerous helpful discussions. Alexander Kosovichev pro-
vided the model S data and helpful comments on the analy-
sis of helioseismic data. Gilles Chabrier provided the
SCVH95 EOS data for 0.1 and 0.3M� tracks. Don Vanden-
Berg graciously calculated some solar tracks for low-mass
stars. This work was performed under the auspices of the
US Department of Energy by Lawrence Livermore
National Laboratory under contract W-7405-Eng-48 and
was supported in part by grant AST-99-87391 of the
National Science Foundation.

REFERENCES

Antia, H.M., & Basu, S. 1994, ApJ, 426, 801
Aparico, J.M. 1998, ApJS, 117, 627
Bahcall, J. N., & Pinsonneault, M.H. 1995, Rev.Mod. Phys., 67, 781
Bahcall, J. N., Pinsonneault, M.H., & Basu, S. 2001, ApJ, 555, 990

Bahcall, J. N., Pinsonneault, M. H., Basu, S., & Christensen-Dalsgaard, J.
1997, Phys. Rev. Lett., 78, 171
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Bollé, D. 1987, Phys. Rev. A, 36, 3259
———. 1989, Phys. Rev. A, 39, 2752
Chabrier, G., & Baraffe, I. 1997, A&A, 327, 1039
Christensen-Dalsgaard, J., et al. 1996, Science, 272, 1286
Cox, J., & Guili, R. 1968, Principles of Stellar Evolution (New York:
Gordon and Beach)

Cvetko, D., et al. 1994, J. Chem. Phys., 100, 2052
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