
19
 9

5A
pJ

S.
 . 

.9
9.

 .
71

3S
 

The Astrophysical Journal Supplement Series, 99:713-741,1995 August 
© 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

AN EQUATION OF STATE FOR LOW-MASS STARS AND GIANT PLANETS 

D. Saumon, 12 G. Chabrier,3 and H. M. Van Horn4 

Received 1994 October 27; accepted 1995 February 2 

ABSTRACT 

We present new equations of state (EOS) for hydrogen and helium, intended for applications to low-mass stars 
{M < 1 Mo), brown dwarfs, and giant planets. They cover the range 2.10 < log T(K) < 7.06 and 4 < log P (dyn 
cm-2) < 19 and include new physical treatments of partial dissociation and ionization caused by both pressure 
and temperature effects. The hydrogen EOS is based on a careful study of nonideal interactions. In the case of 
helium, the principal features of the EOS physics are retained in a simplified model. The calculation is based on 
the free energy minimization method, and a detailed account of the physical model has been published elsewhere. 
Mixtures of hydrogen and helium are obtained with the additive volume rule and an additional ideal entropy-of- 
mixing term. In this paper, we present extensive tabular results for both the H and He EOS, together with a critical 
analysis. Part of this analysis is based on a comparison with other EOS commonly used in astrophysics. Both EOS 
everywhere satisfy the requirements of thermal and mechanical stability and are thermodynamically consistent 
over most of the phase diagram. A complete set of the tables is available in the AAS CD-ROM Series, Vol. 5, and 
by anonymous FTP. 

Subject headings: equation of state — planetary systems — stars: interiors — stars: low-mass, brown dwarfs 

1. A BRIEF HISTORY OF EQUATIONS OF STATE 

The richness of stellar phenomena exposed by modem ob- 
servational techniques calls for a quantitative understanding 
of more subtle, “second-order” effects in stellar structure and 
evolution. Examples of phenomena requiring accurate model- 
ing of the underlying physics include the solar oscillation spec- 
trum, the solar neutrino problem, stellar pulsations, and the 
abundances of elements in the photospheres of white dwarfs. 
Recent progress in infrared technology, together with the ad- 
vent of new space observatories and of large ground-based 
telescopes, is fostering a substantially increased interest in the- 
oretical studies of very low mass stars and of substellar brown 
dwarfs. Modeling these objects demands an understanding of 
the properties of matter under more extreme conditions than 
found in normal stars. 

Many astrophysical problems require knowledge of the 
properties of matter at or near thermodynamic equilibrium. 
The thermodynamic properties of a fluid are characterized by 
the equation of state (EOS), which uniquely determines the 
pressure and all other thermodynamic quantities as functions 
of density and temperature, and which directly enters the 
equations of stellar evolution. The pressure P{p, T) and the 
entropy S{p, T) appear explicitly in these equations and dic- 
tate the mechanical and thermal equilibria of the star, respec- 
tively. Beyond the fact that an equation of state is necessary 
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to compute a stellar model, the quantitative understanding of 
“subtle” stellar phenomena depends, sometimes sensitively, 
on the assumed EOS (cf. Däppen 1994). 

The complexity of an EOS calculation increases considera- 
bly when nonideal effects are compounded with the chemical 
reactions associated with partial dissociation and ionization 
equilibria. In fact, such calculations can only be performed nu- 
merically, and the results are usually presented in tabular form. 
Historically, the Lawrence Livermore National Laboratory 
and the Los Alamos National Laboratory have invested con- 
siderable effort in the development of tabular equations of state 
which are frequently used in astrophysical applications. Most 
of these EOS are based on the free-energy minimization tech- 
nique (discussed in § 2.2) which was pioneered by Harris 
( 1959) and by Harris, Trulio, & Roberts ( 1960). The method 
was significantly expanded to include a more sophisticated 
treatment of nonideal effects in H by Graboske, Harwood, & 
Rogers (1969) and by Fontaine, Graboske, & Van Horn 
( 1977; hereafter, FGVH) who also studied He and C. In a sim- 
ilar vein, Magni & Mazzitelli (1979) generated a model for the 
EOS of mixtures of H and He. In an independent effort, with 
an altogether different set of approximations, Kerley (1972) 
developed a deuterium EOS from which an approximate H 
EOS can be obtained by density scaling. Numerical simula- 
tions of dense plasmas began in earnest in the early 1970s and 
have progressed ever since. Lamb ( 1974) and Lamb & Van 
Horn (1975) developed a model for the dense, fully ionized, 
strongly coupled Coulomb fluid and solid found in the cores 
of white dwarfs. The deep interiors of giant planets consist of 
metallized H and He and the interesting and complex thermo- 
dynamics of this binary Coulomb fluid were studied by Steven- 
son ( 1975 ), by Stevenson & Salpeter (1977), and in a series of 
paper by Hubbard & DeWitt ( 1985 and references therein). 
Marley & Hubbard (1988) integrated this effort with the recent 
experimental work on dense molecular hydrogen to generate 

713 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

5A
pJ

S.
 . 

.9
9.

 .
71

3S
 

714 

an EOS applicable to both the molecular envelope and the me- 
tallic interior of Jovian planets. In another series of papers, 
Rogers developed an EOS for stellar envelopes using the so- 
called activity expansion. This work is part of an effort dedi- 
cated to improving stellar opacities and to providing a consis- 
tent calculation of opacities and EOS (see Rogers 1994 and 
references therein). The most recent development in astro- 
physical EOS is the work of Mihalas, Hummer, & Däppen 
(Hummer & Mihalas 1988; Mihalas, Däppen, & Hummer 
1988; Däppen et al. 1988) which returns to the free-energy- 
minimization technique, but with a much-improved treat- 
ment of the bound states of atoms and molecules interacting 
with their neighbors. 

The past decade has seen tremendous progress in our under- 
standing of dense matter physics, on both the experimental 
and theoretical fronts. Recent experiments on hydrogen and 
deuterium have led to the determination of the H2-H2 potential 
down to separations of ^1.5 Á (Ross, Ree, & Young 1983; 
Dufïy et al. 1994). Equations of state for dense plasmas are 
now becoming well understood, thanks in part to progress in 
computer technology, which has permitted simulations of 
ever-increasing complexity. Several theoretical schemes have 
been proposed to derive accurate equations of state for fully 
ionized hydrogen (Ichimaru, lyetomi, & Tanaka 1987; Cha- 
brier 1990; Stolzman & Blocker 1994), partially ionized hy- 
drogen (Perrot, Furutani, & Dharma-wardana 1990; Tanaka, 
Yan, & Ichimaru 1990; Chibara 1991a,b; Farouki & Hama- 
guchi 1994; Perrot & Dharma-wardana 1994), and for helium 
( Perrot et al. 1990 ). These theories, however, are valid only for 
fully or strongly ionized plasmas and break down for plasmas 
in which a significant number of electrons occupy bound 
states. These studies have demonstrated the great utility of 
different approximations for the computation of plasma prop- 
erties. In particular, when a sample of any substance is suffi- 
ciently compressed, atoms ( or molecules) are so closely packed 
that the exclusion principle promotes bound electrons into 
conducting states (for hydrogen, this occurs near 1 g cm-3). 
This “pressure ionization” represents a thorny problem in the 
calculation of an equation of state, which is often avoided by 
simply interpolating between atomic and fully ionized limits. 
However, recent advances in statistical physics offer the oppor- 
tunity for significant improvements in our understanding of 
this poorly understood phenomenon, and one of the goals of 
the present work is to incorporate this effect in a self-consistent 
treatment of the EOS. 

It was first suggested independently by Wigner & Hunting- 
ton (1935) and by Landau & Zeldovitch ( 1943 ) that pressure 
ionization may occur discontinuously through a first-order 
phase transition. Their qualitative argument was based on the 
drastically different natures of the interaction potentials in 
metals (weakly repulsive electron-screened Coulomb po- 
tentials) and in insulators (strongly repulsive hard-sphere 
potentials). The calculation becomes a challenge, requiring the 
incorporation of quantum mechanics for the electrons, an ad- 
equate treatment of the bound states of the atomic and molec- 
ular species in the dense fluid, and a careful treatment of the 
interactions among the species. The theoretical tools required 
to tackle this problem were largely developed by Ebeling and 
collaborators (Kraeft et al. 1986), and the first quantitative at- 
tempt to demonstrate the possibility of the aforementioned 
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phase transition in hydrogen, the so-called “plasma phase tran- 
sition” (PPT), was derived by Ebeling & Richert ( 1985). Al- 
though their work was based on a very approximate treatment 
of the interactions, it motivated further detailed calculations, 
and in particular the work by Saumon & Chabrier (1991,1992, 
hereafter SCI and SC2, respectively) who derived a complete 
phase diagram for fluid hydrogen at high density. 

In this paper, we present new EOS tables for pure H and 
pure He in which the nonideal effects are carefully included. In 
particular, pressure ionization of hydrogen has been explicitly 
treated. The EOS tables cover a pressure and temperature 
range appropriate for low-mass stars (M < 1 M0), brown 
dwarfs, and giant planets. The EOS of H and He are discussed 
separately in §§ 3 and 4, respectively. The generation of the 
large EOS tables is described in detail in § 5. The thermody- 
namics of H/He mixtures can be obtained from compositional 
interpolation between the pure cases using the method de- 
scribed in § 6. Representative thermodynamic surfaces are pre- 
sented and discussed in § 7, and § 8 addresses the constraint of 
thermodynamic consistency. Section 9 is devoted to an inter- 
comparison of several H EOS, a useful way of establishing their 
relative merits and flaws. 

2. GENERAL CONSIDERATIONS 

2.1. Chemical and Physical 'Pictures ” 

Equation-of-state models can be divided into two broad cat- 
egories (see Hummer & Mihalas 1988 for a detailed 
discussion). In the physical picture, only “fundamental” parti- 
cles are considered (electrons and nuclei), which interact 
through Coulomb potentials. In principle, one would like to 
solve the Schrôdinger equation for such a system using a 
quantum-statistical many-body theory, obtaining a spectrum 
of bound electronic states, forming “atoms” and “molecules” 
with density-dependent eigenvalues, together with free elec- 
tronic states. This approach effectively solves the quantum 
problem simultaneously with statistical mechanics. It is ap- 
pealing since it corresponds to our intuitive conception of the 
behavior of matter and is formally exact. It has been applied to 
partially ionized plasmas in the regime of weak ion-ion Cou- 
lomb coupling ( Rogers 1981,1984; see also Alastuey 1994 and 
Alastuey, Cornu, & Perez 1994). However, although the phys- 
ical picture probably offers the most rigorous treatment, the 
calculation of an EOS using this approach is a formidably com- 
plex problem. It has not been applied to the relatively low tem- 
peratures and high densities relevant to the phenomenon of 
pressure ionization because the physical theories are based on 
an expansion which cannot converge in this regime. 

On the other hand, the chemical picture assumes that bound 
configurations, such as atoms and molecules, retain a definite 
identity and interact through pair potentials. This amounts to 
solving the quantum problem first (with a heuristic approach) 
and then applying statistical mechanics to populate available 
states. This approximation has a serious drawback. At densities 
corresponding to pressure ionization, the electrons in bound 
configurations become delocalized, pair potentials become 
meaningless and consequently, bound species lose their iden- 
tity. Nevertheless, the chemical picture emerges as a useful al- 
ternative in view of the practical limitations of the physical pic- 
ture. 

SAUMON, CHARRIER, & VAN HORN 
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2.2. Free-Energy Minimization Technique 

Our EOS models for H and He are within the framework of 
the chemical picture and based on the free-energy minimiza- 
tion (FMIN) technique which is well described by Graboske 
et al. ( 1969), FGVH, and Hummer & Mihalas ( 1988). The 
approach is particularly simple: Given a mathematical model 
for the Helmholtz free energy F( F, T, {iV/} ) of the system as a 
function of the total volume V, temperature T, and particle 
numbers Nt for each species /, the chemical equilibrium of the 
mixture is obtained by minimizing F at fixed V and T, subject 
to the stoichiometric constraints imposed by the chemical re- 
actions taking place in the system. This fixes the set {}, and 
the pressure P and entropy S can then be calculated by differ- 
entiation of the free energy with respect to V and T, respec- 
tively, at fixed {Ni}. Exact expressions for these so-called first 
derivatives of the free energy are formally given by (Reichl 
1980, p. 37): 
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mations are required. Contrary to expansion techniques, con- 
tributions with strongly nonlinear dependences on density or 
temperature can be included with no additional effort. Under 
the assumption of factorizability, the free energy model be- 
comes a sum of terms, each involving a different physical con- 
tribution. This is extremely convenient, as each term becomes 
a subroutine in the EOS code. Terms can be added, removed, 
and modified with ease. Hummer & Mihalas ( 1988 ) point out 
that this method will work for any free energy model. How- 
ever, because the validity of the resulting EOS is hard to estab- 
lish, unless it violates fundamental constraints or known lim- 
its, great care must be taken in constructing the free-energy 
model to ensure statistical mechanical consistency. 

2.3. Constraints on Equations of State 

The EOS is subject to the fundamental thermodynamic con- 
straints of mechanical and thermal stability, 

EQUATION OF STATE 

p=-<* 
dV T,{Ni) 

s=-d-* 
dT (1) 

VANi} 

dP 
dV 

<0, 
TANi) 

dS 
dT 

>0. 
VANi) 

(3) 

The specific heats, compressibility, thermal expansion coeffi- 
cients, adiabatic gradients, etc., are obtained by further differ- 
entiating P and S with respect to V and T and constitute the 
second derivatives of the free energy. Note that in this case, 
the {Ni} are not kept constant during the differentiation but 
allowed to vary with V and T according to the FMIN solution 
for the chemical equilibrium. Unfortunately, differentiation 
amplifies the features and defects in F, and since the second 
derivatives are usually obtained numerically, they are prone to 
numerical noise. 

The FMIN method becomes truly useful when the grand 
partition function of the system is written as the product of 
kinetic, internal, and configurational contributions: 

oY ~ oy (?f (Pf f 1 \ ^ ^ kin^ int^ conf • Va/ 

A physical discussion of the four approximations leading to 
this factorizability is given in FGVH. In practice, small devia- 
tions from exact factorizability are usually accommodated by 
corrections based on expansions in terms of a small parameter. 
However, when the particles of the system interact strongly, 
the spectrum of bound states is affected and and conf can 
no longer be factorized. Similarly, the bound state configura- 
tion determines the interaction potentials and modifies ^conf- 
ín the FMIN procedure, the total partition function is never- 
theless assumed to be factorizable, with some modification em- 
ployed for the spectrum of bound states entering the internal 
partition function i2fint based on the interaction potentials. 
Many different treatments of this problem have been used, 
some very crude and with little statistical mechanical consis- 
tency, some quite sophisticated. There is no formally exact 
treatment, however, and this is the source of many dis- 
agreements between EOS computed with this method. 

Despite this shortcoming, the FMIN technique has several 
powerful advantages. In principle, it ensures thermodynamic 
consistency of the resulting equation of state. All the physics 
and approximations appear at the outset in the free energy 
model and are therefore quite visible. No additional approxi- 

respectively, and of thermodynamic consistency, e.g., 

dP 
dT vA*i} 

as 
dV TANA 

(4) 

In equations (3) and (4), the {V,} need not be held constant 
during differentiation provided that they have the values im- 
posed by the condition of chemical equilibrium. This last con- 
straint reflects the fact that P(V, T) and S(V, T) are derived 
from the same thermodynamic potential F\ similar relations 
hold among the mixed derivatives of other thermodynamic po- 
tentials. Violations of these constraints point to potential prob- 
lems or flaws in the EOS, but an EOS which satisfies them is 
not necessarily accurate. In particular, the FMIN method gwar- 
antees thermodynamic consistency for any free-energy func- 
tion F(F, T, {N¿}). 

Although great progress is currently being made in labora- 
tory measurements, most astrophysically interesting regimes 
are still weakly constrained by experimental data. While any 
theoretical EOS should be required to reproduce the appropri- 
ate experimental results, it remains true that the validity of an 
EOS can only be established in an indirect fashion. It should, 
of course, reproduce known asymptotic limits. Computer sim- 
ulations also provide useful but limited tests for theoretical 
equations of state. Finally, equations of state can be compared 
with each other in the light of the physics included in the un- 
derlying models. This helps to establish the relative merits of 
the EOS and of the approaches used, as well as to map our 
progress toward a realistic description of the behavior of matter 
under extreme conditions. 

3. EQUATION OF STATE FOR HYDROGEN 

3.1. Hydrogen Phase Diagram 

The simplified phase diagram for hydrogen shown in Figure 
1 helps to make a few basic points. In the low-density, low- 
temperature region, hydrogen is essentially neutral and forms 
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fie. 1.—Phase diagram of hydrogen. The area delimited by the long- 
dashed line shows the coverage of the present EOS calculation for H. 

atoms and molecules. Molecules dominate at low tem- 
peratures5 (log 3.5), and they dissociate into atoms as the 
temperature is raised. At still higher temperatures, atoms ion- 
ize to form a low-density plasma of protons and electrons. The 
dashed curve delimiting these three regions indicates a degree 
of dissociation (or ionization) of 50%. At densities above 
log p ^ -2, atoms and molecules interact strongly and form a 
nonideal fluid. In addition, the Saha equations for ionization 
and dissociation equilibria become completely inappropriate 
for log p > — 1, so that it is not possible to estimate the chemical 
equilibrium in this dense fluid with simple theories. At even 
higher densities, near log p = 0 for hydrogen, the mean distance 
between H atoms becomes comparable to twice the value of 
the Bohr radius, and the electronic wave functions of neigh- 
boring atoms overlap. The electrons are forced into unbound 
states, and the fluid becomes a pressure-ionized plasma. Our 
calculation of pressure ionization ( SC2 ) reveals that pressure- 
ionization of hydrogen may not be a gradual process at all tem- 
peratures but may occur discontinuously through a first-order 
phase transition, the so-called “plasma phase transition” 
( PPT ). The metastable region of this transition is shown by the 
heavy curve labeled “PPT,” which ends at a critical tempera- 
ture of log 7; = 4.185. 

Two important issues pertaining to the plasma are the degree 
of electron degeneracy and the strength of the Coulomb cou- 
pling between the charged particles. Above the solid line la- 
beled 0=1, where 0 = kBT/e¥, the zero-temperature Fermi 
energy eF of the electrons is larger than and they are there- 
fore degenerate. Protons, on the other hand, remain classical 
over most of this diagram. Above the line F = 1, where T = c2 / 
akBT, nonideal Coulomb effects play an important role. In this 
regime, the electrostatic potential energy between two protons, 
e1 ! a, where e is the proton charge and a is the mean interpar- 

5 Throughout this work, log T is the logarithm of the temperature in K, 
and log p is the logarithm of the mass density in g cm-3. 

tide distance, becomes larger than their kinetic energy, kBT. A 
third plasma parameter, which is related to the electron den- 
sity, is rs = Qel cio, where ae is the mean separation between 
electrons and Oq is the Bohr radius. At intermediate tempera- 
tures (log T « 5) and at densities log p ^ 0, temperature- 
and pressure-ionization are of comparable importance. In this 
regime, thermal excitation of hydrogen atoms is significant, 
and they are immersed in a moderately coupled plasma ( T ^ 
1 ) in which the electrons are partially degenerate ( 0 æ 1 ). This 
regime is particularly difficult to treat, because the internal lev- 
els of the atoms are strongly perturbed by the surrounding 
plasma. For most elements, this is the regime, along with pres- 
sure ionization, in which equations of state are most unreli- 
able. 

Electrons remain nonrelativistic throughout this diagram. 
On the other hand, at low densities and high temperatures, the 
radiation pressure becomes larger than the gas pressure, 
Fgas. Finally, the upper left part of Figure 1 represents condi- 
tions which are not realized in astrophysical contexts, where 
hydrogen is a molecular solid or possibly forms a Coulomb 
lattice. 

Interior models of various hydrogen-rich objects are shown 
by dotted curves in Figure 1. The gaseous envelope of Jupiter 
is shown by the curve labeled “a.” The envelope is dominated 
by molecular hydrogen, and it passes through the region of 
pressure ionization. If the PPT calculated by SC2 actually oc- 
curs in nature, it should be found in the envelope of Jupiter. 
Just below the PPT, the dense molecular fluid becomes 
strongly nonideal due to the strongly repulsive intermolecular 
forces. 

Curves b, c, and e represent main-sequence stars with masses 
of 0.3, 1, and 15 MQ, respectively. The 15 M© star has the sim- 
plest EOS physics. It is fully ionized throughout its interior, 
and the plasma is very weakly coupled ( T 1 ). Electron de- 
generacy is also weak (0 > 1). The contribution of radiation 
pressure is significant, however, and the ratio FVad/Pgas is 
roughly constant throughout the interior. The solar model c is 
both cooler and denser. Accurate modeling requires attention 
to relatively weak nonideal effects (F ^ 0.1 ) and partial elec- 
tron degeneracy near the center. Recombination of the plasma 
into H atoms affects the structure near the surface. Low-mass 
stars, such as the 0.3 M© model shown, probe more complex 
areas of the phase diagram. Electrons are partially degenerate 
throughout most of the star, and the electrostatic interactions 
in the plasma become significant. This model crosses the 
difficult regime where both F and 0 are of order unity. In the 
outer part of the model, protons and electrons recombine to 
form atoms in a nonideal regime, and finally molecules form 
at the very surface. Brown dwarfs generally occupy the region 
between curves a and b. 

Curve d is a 12,500 K DA white dwarf envelope, stratified 
into hydrogen-rich and helium-rich layers, surrounding a car- 
bon core (H, He, and C, respectively). Only the outermost 
layer, consisting of pure hydrogen, is shown here. In this layer, 
hydrogen forms a weakly coupled, nondegenerate plasma. 
Atomic hydrogen is found at the very surface of the star. The 
relatively low densities and high temperatures characteristic of 
this layer indicate that nonideal effects in the EOS are of mod- 
erate importance. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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3.2. Free-Energy Model for Hydrogen 

We have developed a single, unified Helmholtz free-energy 
model to describe the EOS of hydrogen throughout the region 
bounded by the long-dashed line shown in Figure 1. In some 
limiting regimes, this model reduces to simpler forms which 
are computationally more expedient. The model is fully de- 
scribed by Saumon ( 1990), SCI, SC2, and Chabrier ( 1990). 
In these papers, the resulting EOS is compared with static and 
dynamic compression experiments, and certain aspects of the 
model are compared with computer simulations. Both types 
of comparisons demonstrate the viability of our model in the 
regimes where it can be tested.6 

A presentation of the model and a justification of its approx- 
imations would be too lengthy to be reproduced here. Instead, 
we provide here only a brief summary of the main features and 
refer the interested reader to the papers cited above for details. 

1. We consider the following species: H2, H, H+, and e. 
Species such as H~, Hj, and have very low abundances 
and have a negligible effect on the EOS. 

2. The model is based on the chemical picture, and we as- 
sume factorizability of the partition function; classical particles 
statistics for H2, H, and H + ; and Fermi-Dirac statistics for the 
electrons. 

3. We account for weak diffraction effects in the interac- 
tions between heavy particles through the Wigner-Kirkwood 
h2 correction. 

We treat interactions between neutral particles as follows: 

1. The configuration free energy for neutral particles is eval- 
uated in the framework of the WCA fluid perturbation theory 
(Weeks, Chandler, & Andersen 1971a,b), after suitable modi- 
fication for application to a binary mixture at high densities 
and temperatures. We consider only pairwise interactions. 

2. We use an experimentally determined H2-H2 potential, 
and ab initio H-H2 and H-H potentials. 

Interactions between charged particles are treated in the fol- 
lowing way: 

1. At high densities, the fluid is represented by a plasma of 
protons immersed in a polarizable electron background. In the 
limit of weak electron-proton coupling (log p ^ —0.5), this 
plasma can be approximated as the superposition of ( 1 ) a fluid 
of electron-screened ions, interacting through a screened Cou- 
lomb potential that includes the ion-ion and the ion-electron 
interactions, and (2) a background of rigid, degenerate elec- 
trons (Ashcroft & Stroud 1978). At very high densities, the 
one-fluid model describing the electron-screened ionic fluid, 
known as the screened one-component plasma model 
(SOCP), reduces to the well-studied one-component plasma 
model ( OCP ), a mixture of point ions immersed in a rigid elec- 
tron background. 

6 In the final stage of preparation of this paper, we learned that Holmes, 
Ross, & Nellis ( 1995 ) have measured for the first time the temperature of 
shock compressed H2 and D2. Their result seem to indicate that the degree 
of pressure dissociation of H2 is higher than predicted by the model pre- 
sented here. This was anticipated to a certain degree by SCI and SC2. A 
study of the consequence of these very recent measurements on the EOS is 
in progress. 
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2. The polarizability of the electron fluid is described by a 
density- and temperature-dependent dielectric function that 
includes a local field correction to take into account correlation 
effects between electrons beyond the random phase approxi- 
mation (Chabrier 1990). 

3. The thermodynamics of the SOCP is obtained by solving 
an integral equation, the so-called hypemetted chain equation. 
It reproduces the results of Monte Carlo simulations to better 
than 1%. It also recovers the well-known limiting behaviors of 
the OCP (limit of no screening, rs = 0), the hot Thomas-Fermi 
model {rs<^ 1, 0 1 ), and the one-component Debye-Hiickel 
limit (P 1, r5 = 0). 

4. The thermodynamics of the quantum electron fluid in- 
cludes exchange and correlation terms at finite temperature 
(Ichimaruetal. 1987). 

5. For rs> 10 (log p < —2.6), electrons and protons are 
both weakly coupled and behave as classical particles. The one- 
component, dielectric formulation of the SOCP does not apply 
here, and we use a two-component plasma (TCP) model in 
which protons and electrons interact through Coulomb poten- 
tials modified to account for quantum diffraction effects at very 
short range. The latter modification prevents the well-known 
collapse of a classical gas composed of particles of opposite 
charges. This model recovers the appropriate two-component 
Debye-Hiickel limit (f l, rs> 1 ). 

6. Interactions between charged particles and neutral atoms 
and molecules are described by a polarization potential ( Kraeft 
et al. 1986). This potential is attractive at long range, where a 
charged particle feels the dipole it induces in the neutral parti- 
cle. At short range, however, the force becomes strongly repul- 
sive, and we approximate this by a hard-sphere potential. 

The internal partition function (IPF) of an isolated atom is 
well known to be divergent. For this reason, the sum over 
bound states must be cut off in some appropriate way. Physi- 
cally, such a cut off is justified by the interactions with neigh- 
boring particles. The FMIN method is weakly constrained in 
this respect, and the differences among the approaches that 
have been employed are often the source of internal inconsis- 
tencies and of disagreements between different equations of 
state. Regions of partial ionization and dissociation (cf. Fig. 1 ) 
are particularly sensitive to this aspect of the free-energy 
model. We have adopted the following treatment for bound 
states: 

1. The energies of bound levels ( H, H2 ) are taken to be those 
of the isolated atom or molecule, and the effect of interparticle 
interactions is described with an “occupation probability” for- 
malism (SCI; described in detail in Hummer & Mihalas 
1988). All known excited electronic states of the H2 molecule 
are included, with their respective vibrational and rotational 
levels. The internal partition function becomes 

oo 
^int = 2 gnUn exp ( - (n/kBT) , (5 ) 

«=0 

where gn is the multiplicity of level n with energy e„, and 0 < 
< 1 is the occupation probability of the level. This approach 

offers a good level of consistency between the interaction terms 
and their effect on the internal partition function. 

EQUATION OF STATE 
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2. Occupation probabilities are computed from the part of 
the configuration energy that corresponds to the equivalent 
volume occupied by the neutral particles. This “excluded vol- 
ume” contribution is the lowest-order approximation to the 
total configuration free energy. 

3. The volume occupied by neutral particles is expressed in 
terms of equivalent hard sphere diameters for H2 and H. These 
are computed from the interaction potentials with a tempera- 
ture- and density-dependent thermodynamic criterion. 

3.2.1. Plasma Microfield 

The free-energy model for hydrogen described above can be 
improved in several ways. We are currently considering a num- 
ber of such improvements. The most important of these in- 
volves the effect of charged particles on the bound states of 
hydrogen atoms. Interactions with neighboring particles, 
charged and neutral, affect the number of bound states of 
atoms and molecules. A proper treatment of this effect is essen- 
tial for an accurate description of partial dissociation and ion- 
ization, particularly at larger densities (log p > -3 ). 

In its current form, our free-energy model only accounts for 
the effect of neutral particles on excited bound states. In reality, 
neighboring charged particles also affect the bound states, both 
through inelastic collisions with bound electrons and also 
through the fluctuating micro-electric field induced by their 
thermal motion. This microfield acts as a time-dependent per- 
turbation on the Coulomb potential of the nucleus and can 
induce Stark ionization of the upper levels of an atom. Colli- 
sions and microfield effects on hydrogenic atoms are discussed 
in great detail by Hummer & Mihalas ( 1988), who conclude 
that for log p < -1.5, the microfield is the dominant mecha- 
nism. Being caused by random thermal motions, the fluctuat- 
ing microfield is described by a statistical distribution ( see also 
Perrot & Dharma-wardana 1994). Hummer & Mihalas have 
adopted the T = 0 Holtzmark distribution, where T is again the 
Coulomb-coupling parameter defined above. We have found 
that this distribution, which does not account for the corre- 
lations among charged particles at F > 0, has much too strong 
an effect on the internal partition function and leads to spuri- 
ous results for F 1. Generating microfield distributions for 
finite F is computationally involved, and a suitable, parame- 
terized form was not available when this EOS was computed. 
As a consequence, we have ignored the effect of the microfield 

Vol. 99 

altogether, preferring to delay its inclusion until an adequate 
distribution function becomes available. The net effect of this 
omission is that, as the gas becomes thermally ionized, the 
bound states of an H atom are less affected by the neighboring 
particles than is the case when the atom is surrounded by neu- 
tral particles. As temperature-ionization proceeds (e.g., by rais- 
ing T), the internal partition function for H is thus slowly re- 
populated, a nonphysical behavior. This creates a “tail” of 
residual atoms at the few percent level in the partial ionization 
zone. We shall return to this point in § 9. 

3.3. “PlasmaPhase Transition”(PPT) 

The realistic description of a dense plasma and of the H2-H 
mixture provided by our model allows us to focus on the prob- 
lem of pressure-ionization from both the high-density and the 
low-density sides. We found that the model described above 
becomes thermodynamically unstable in the regime of pres- 
sure ionization and exhibits the features of a first-order phase 
transition. We have computed the coexistence curve for this 
transition using the phase equilibrium conditions (SC2). The 
characteristics of the resulting phase transition are given in Ta- 
ble 1, and the corresponding metastable region is indicated in 
Figure 1. This “plasma phase transition” (PPT) indicates that 
pressure ionization is a discontinuous process. As with all first- 
order phase transitions, all thermodynamic quantities are dis- 
continuous across the coexistence curve except for T, P and 
the chemical potentials. 

Since ionization is known to be continuous along a high- 
temperature isotherm and that our model predicts discontinu- 
ous pressure-ionization at low temperatures, there must exist 
a critical value of the temperature, Tc, above which there 
is no transition. We find this critical point at log Tc = 4.185, 
log Pc= \ \ .788, and log pc = -0.456. 

This transition separates a mostly nonionized phase domi- 
nated by H2 molecules (phase I) from a partially ionized phase 
dominated by fluid metallic hydrogen (phase II) which lies at 
higher density. The degree of ionization in each phase is given 
in Table 1, where a is the fraction of all hydrogen nuclei which 
are in the form of H+. 

We emphasize that this result does not stem from any special 
assumptions about pressure ionization built into the free-en- 
ergy model. It appears “naturally” from our best effort to de- 
scribe the behavior of hydrogen throughout the phase diagram. 

SAUMON, CHABRIER, & VAN HORN 

TABLE 1 
Coexistence Curve for the Plasma Phase Transition 

logT logP logp1 logpn ASa 

(K) (dyncm-2) (gem-3) (gem-3) a1 a11 (kB per proton) 

3.70   12.330 -0.125 -0.036 3.77 X 10-4 0.194 0.615 
3.78   12.290 -0.155 -0.056 5.50 X 10-4 0.211 0.590 
3.86   12.210 -0.194 -0.097 8.23 X 10-4 0.214 0.544 
3.94   12.143 -0.237 -0.131 1.39 X 10-3 0.228 0.508 
4.02   12.053 -0.292 -0.187 2.49 X 10-3 0.232 0.464 
4.10   11.952 -0.367 -0.260 5.58 X 10-3 0.229 0.421 
4.18   11.800 -0.456 -0.420 5.81 X 10-2 0.133 0.142 
4.185   11.788 -0.456 -0.456 7.52 X 10-2 7.52 X 10-2 0 

a The change in entropy across the PPT is AS = S11 - Sl. 
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SC2 investigated a variety of modified free-energy models, all 
of which lead to the same qualitative result. The EOS also re- 
produces known limits which bracket the PPT. Further, the 
behavior of the EOS at pressures above and below the regime 
of pressure ionization, where the EOS is quite reliable, suggests 
that something peculiar happens in the intermediate regime 
(Fig. 2 of SC2). In our model, the PPT apparently occurs be- 
cause the screened Coulomb potential is much less repulsive 
than the H2-H2 potential. As the system is compressed at low 
T, it collapses to a state which occupies a smaller volume in 
phase space. Despité these plausibility arguments, however, we 
emphasize that there is as yet no direct experimental evidence 
supporting the existence of the PPT. 

3.3.1. A Flaw in the EOS 

Just above the PPT, Table 1 shows that ionization is not 
complete in phase II. The model predicts a gradual increase of 
a as the density is raised in phase II, so that complete ionization 
is finally reached by a secondbuX smaller, discontinuous jump. 
This second discontinuity occurs at log p ^ 0.4 ->0.5, depend- 
ing on the temperature. There are conceptual and physical rea- 
sons to reject this feature of the EOS, while still maintaining the 
physical plausibility of the PPT. The reason is that this second 
discontinuity can be directly traced to an ad hoc feature of the 
potential we have used to describe the interactions between 
neutral particles. The prediction of the PPT, however, does not 
hinge on this feature, as discussed by Saumon ( 1990 ) and by 
SC2. Because it has no physical basis, we have removed this 
second discontinuity in the EOS by interpolating each com- 
puted isotherm between log T = 3.54 and 4.66 over this narrow 
density range, to bridge the gap between phase II and the fully 
ionized plasma. We have interpolated S independently from 
P. A somewhat peculiar and definitely unphysical behavior re- 
mains in the interpolated entropy, leading to an undesirable 
feature in dS/dp \ r which could not be eliminated. 

3.4. Interpolation 

Despite the quest for the metallization of hydrogen in the 
laboratory (cf. Mao & Hemley 1992 and references therein) 
and the observation of exciting phenomena revealing a rich 
phase diagram for this simplest of all elements, the PPT re- 
mains hypothetical. For this reason, we have also generated 
EOS tables in which we have interpolated across the entire re- 
gime of pressure ionization to remove all of the discontinuities 
associated with the PPT. The resulting EOS represents our best 
estimate of the thermodynamics of hydrogen, if we assume that 
pressure ionization occurs continuously. This interpolated 
EOS also provides a useful reference for studying the effects of 
the PPT in various astrophysical situations. 

Interpolation of EOS surfaces in a bounded (p, T) domain 
is constrained by a number of requirements. Clearly, all first 
and second derivatives of the free energy with respect to p and 
Tmust be smooth and continuous at the boundaries. In addi- 
tion, the interpolated EOS must satisfy the constraints of me- 
chanical and thermal stability, as well as thermodynamic 
consistency (eqs. [3]-[4] above). After extensive experimen- 
tation with a variety of interpolation schemes, we have found 
that in practice, these constraints cannot all be met unless the 
interpolated region is expanded well into regions where we be- 

lieve that the EOS is very reliable. This may be a further indi- 
cation that something unusual actually does happens in the 
regime of pressure ionization. 

The final interpolation scheme we have adopted compro- 
mises thermodynamic consistency by putting the emphasis on 
the accuracy of the P(p, T) and S{p, T) surfaces. To that end, 
we have kept the size of the interpolation region to a mini- 
mum. We used cubic splines along individual isotherms to in- 
terpolate log (P/p2) and log S independently across the pres- 
sure-ionization region. The entropy is a very well behaved 
quantity and is easily interpolated. The pressure, however, is a 
more rapidly varying quantity, and it was necessary to assist 
the interpolation “manually” in order to avoid unreasonable 
behavior of the spline interpolant in some regions. The density 
range of the interpolation, which is the same for P and S, was 
adjusted separately for each isotherm to preserve as much of 
the original EOS as possible while still obtaining a well-be- 
haved interpolated surface. The resulting interpolated region 
covers roughly the range 3.54 < log P < 4.74 and -0.5 < 
log p < 0.5. Because second derivatives of the free energy are 
obtained by differentiating these new surfaces, the EOS is not 
thermodynamically consistent in this region, as expected. This 
issue is discussed in depth in § 8. 

Another useful quantity which we have tabulated is the in- 
ternal energy, U. Instead of interpolating U independently 
from P and S, and thereby introducing additional inconsisten- 
cies into the EOS, we have used the relation 

dU 
dT v 

(6) 

so that the U and S surfaces are constructed to be consistent 
with each other. We start by interpolating log U along the cold- 
est interpolated isotherm (log P = 3.54), and we then fill the 
interpolated region by integrating equation (6) with respect to 
P. Due to numerical inaccuracies, the resulting U surface is not 
as smooth as the S surface, with typical errors of ^4%. While 
derivatives of S can be expressed in terms of derivatives of U, 
more accurate results are obtained by differentiating the S{p, 
T) surface. 

4. EQUATION OF STATE FOR HELIUM 

4.1. Helium Phase Diagram 

Figure 2 shows the phase diagram of helium, identifying the 
same physical regimes as in Figure 1. Regimes dominated by 
He, He+, and He2+, respectively, are separated by dashed lines 
which indicate a degree of ionization of 50% for each ioniza- 
tion stage. These chemical equilibrium curves do not extend 
into the high-density region, as their counterparts do in Figure 
1 for H, because we have not addressed the problem of pressure 
ionization of helium, as we discuss in the next section. How- 
ever, pressure ionization of helium probably occurs at densi- 
ties ~ 10-50 g cm-3. The dotted line labeled “a” is an envelope 
model for a DB white dwarf (pure helium composition) with 
Peff = 15,000 K and log g = 8. Due to the low opacity of atomic 
helium, which dominates the photosphere in this model, the 
envelope has a much higher density than the similar DA model 
shown in Figure 1. Consequently, electron degeneracy and 
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log T (K) 

Fig. 2.—Phase diagram of helium. The area delimited by the long- 
dashed line shows the coverage of the present EOS calculation for He. 

nonideal Coulomb forces (measured by 6 and F, respectively) 
play a more significant role in these stars (Mazzitelli 1994). 
The long-dashed line delimits the extent of our EOS calcula- 
tion for helium, which is nearly the same as for hydrogen 
(Fig. 1). 

4.2. Free-Energy Model for Helium 

While the Helmholtz free-energy model we have developed 
for hydrogen can also be applied to other elements in a broad 
sense, helium presents peculiarities that must be addressed if 
we are to describe the physics of its EOS with a similar degree 
of detail. 

In the regime of partial ionization, caused by both tempera- 
ture and pressure effects, we have a complex mixture of in- 
teracting helium species: He, He + , He2+, and e. The He+ ion 
presents a particular difficulty in that it both carries a net 
charge and retains a bound electron and therefore has a finite 
size. There are several possible approaches to describe the in- 
teractions of this ion in the plasma. For example, we may de- 
scribe He + as a polarizable charged hard sphere. Another way 
is to use pseudopotentials; this is a more rigorous way of com- 
puting the interactions with charged particles while keeping a 
self-consistent description of the bound state. In principle, the 
pseudopotential is temperature- and density-dependent. To 
our knowledge, however, there are no calculations for He+ 

which include the density dependence. This is essential when 
addressing the problem of pressure ionization. 

Pressure ionization of helium also presents a number of 
challenges in the framework of the chemical picture. It is quite 
possible that helium may also display discontinuous pressure 
ionization, similar to the PPT we have found in hydrogen. We 
believe that there can only be one He PPT, at least at low tem- 
peratures. Pressure ionization depends mainly on the spatial 
dimensions of phase space, while thermal ionization depends 
mainly in the momentum coordinates. At temperatures where 
He is not thermally excited (log T ^ 4.2), all He atoms are in 
their ground states and both electrons occupy the same spatial 

wavefunction in the atom (only their spin states are different). 
As density is increased at fixed temperature, the wavefunction 
shared by the two electrons is altered by interactions with 
neighboring He atoms. Ultimately the eigenenergy becomes 
positive, and both electrons become unbound. Because the two 
electrons cannot be distinguished in the He ground state, pres- 
sure ionization cannot proceed through an intermediate He+ 

stage. This is no longer true when thermal excitation becomes 
significant, as the two bound electrons then occupy different 
spatial wavefunctions. The nature of pressure ionization of He 
may change dramatically as thermal excitation comes into 
play. 

In view of these difficulties and of the very substantial effort 
that would be required to address them properly, we instead 
elected to adopt a simple free-energy model for the present He 
work. Simultaneously, some members of our group are contin- 
uing to investigate the more difficult aspects of this problem 
(Aparicio & Chabrier 1994). Since He represents only æ 10% 
of all particles in most astrophysical problems, a more approx- 
imate treatment of the He EOS is generally acceptable. The 
model described below is quite reliable over most of the phase 
diagram (Fig. 2), but it cannot be used in the regime of pres- 
sure ionization. We employ an interpolation procedure similar 
to that described above for H to bridge across this region. 

We have divided the He phase diagram into two regions for 
this calculation. In the high-density region (log p > 0.5 ) where 
He is fully pressure ionized, we have used the SOCP model 
(Chabrier 1990). In the low-density region, (log p < 0.5), we 
use the following free-energy model for a system consisting of 
He, He+, He2+ and e\ these species are represented by sub- 
scripts i= 1, 2, 3, and e, respectively: 

F{N\, N2, N3, Ne, F, T) - Fid + T^onf + Fdh + Fint. (7) 

Electroneutrality of the system requires that 

Ne = N2 + 2N3, (8) 

and the mass density is given by 

P=^2V,, (9) 
y i= 1 

where mHe is the mass of the helium atom. We use the follow- 
ing explicit expressions for the different terms of equation ( 7 ) : 

1. The kinetic terms are given by Maxwell-Boltzmann sta- 
tistics for the heavy particles and by Fermi integrals for the 
electrons: 

Flá = kBT ¿ ^ 
i=l 

IrtS \3/2' 
m,kBT / 

+ NekBT[a-d3/2I3/2(a)], (10) 

where m, is the mass of a particle of species i, and is the 
n = 5 Fermi integral, defined by 

In 
x^dx 
c*-“+ 1 ' (11) 
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The parameter a is the dimensionless chemical potential for 
the free electrons, a = iie/kBT, defined by 

/i/2(«)H0"3/2 , (12) 

where 6 is the degeneracy parameter defined in § 3.1. 
2. The configuration free energy Fconf arising from He-He 

interactions is computed with the variational form of fluid per- 
turbation theory, which has been very successful in describing 
atomic and molecular fluids near the triple point. (A different 
form of fluid perturbation theory, the so-called WCA expan- 
sion, was used for the H2-H fluid configuration energy in § 3.2.) 
Such theories are based on the fact that atomic and molecular 
interaction potentials have weak, usually attractive, tails at 
long range (typically 1 / r6 ) and strongly repulsive cores at short 
range. This allows the separation of the potential into a “refer- 
ence” part (the strongly repulsive core) and a “perturbation” 
part (the weak long-range tail). An expansion of the free en- 
ergy is performed around the contribution arising from the 
“reference” part, which is almost always approximated by the 
free energy of a hard-sphere fluid. An excellent review of fluid 
perturbation theories can be found in Barker & Henderson 
(1976), and a summary is given in Saumon ( 1990). Here we 
use a modified variational fluid theory developed by Ross 
( 1979), in which the reference potential is taken to be propor- 
tional to 1/r12 instead of a pure hard-sphere potential. This 
choice gives a better account of the softness of the repulsive 
core (which is not infinitely repulsive) and leads to better 
agreement with experimental results at high densities. In this 
formulation, we have 

í’conf = í7ss(j?) + :^1 J (p(r)gHS(r,ri)d3r , (13) 

the potential 0(r). In this regime, He atoms no longer interact 
as classical point particles. This violates a key assumption un- 
derlying the formulation described above. When Ath//b is not 
too large, the quantum effects are weak, and they can be in- 
cluded to leading order by adding to Fconf the first non vanish- 
ing term of the Wigner-Kirkwood h2 expansion to (Landau & 
Lifshitz 1980, p. 98): 

F-■ 24,S-Lrf ,)d’r . (16) 

3. Interactions between the charged particles are described 
by a simple Debye-Hiickel potential. In our present calcula- 
tion, we ignore the fact that He+ is not a point particle. This is 
not a bad approximation at low densities, since the radius of 
the this ion is small (æao/2). For log p ^ 0, the particles are 
far enough apart so that they feel the Coulomb part of the in- 
teraction with He+ but not the very short range effect of the 
bound electron. The free energy is thus approximated by 

Fdh - — kBTV 

OttAdh 

where 

Ar>H — 
4 e2 \-l/2 

(17) 

(18) 

is the generalized Debye screening length for a multicompo- 
nent plasma (DeWitt 1961). The sum is over all species of 
charged particles with charge Zj, including electrons, and dj is a 
correction for degeneracy. For all ions, dj = 1 and for electrons, 

where FSs(y) is the free energy of the soft-sphere reference sys- 
tem (Ross 1979): 

_ 1 /-i/2(a) 

* 2 Ii/2(a) ‘ 
(19) 

FSs(v) = NlkBT 
7?(4 - 3?;) 
(1 - tj)2 (14) 

which is expressed in terms of the hard-sphere fluid parameter, 
the so-called “packing fraction:” 

where <r is the diameter of the hard sphere. 
The second term on the right-hand side of equation (13) 

is the first term of the perturbation expansion. The pairwise 
interaction potential between He atoms, </>(r), is determined 
experimentally by shock-tube experiments ( Nellis et al. 1984 ), 
and gusir, v) is the pair distribution function of the hard- 
sphere fluid (Smith & Henderson 1970; Verlet & Weis 1972). 
It can be shown that this expansion provides an absolute upper 
bound to the exact i^onf. In the variational form of the fluid 
perturbation theory, the hard-sphere diameter a is determined 
by minimizing eq. ( 13 ). 

At low temperatures and high densities, the de Broglie wave- 
length Ath of a He atom becomes comparable to the range r0 of 

In the nondegenerate limit, de= 1.7 

The Debye-Hiickel model of screening provides the correct 
limit for F 1, but it overestimates Coulomb effects when the 
coupling becomes significant T ^ 1. 

4. The bound states of He and He+ are included in the sim- 
plest possible way by ignoring all excited states. This is a good 
approximation so long as log T ^ 4.2 for He and log T ^ 4.5 
for He+. This approximation does affect the location and the 
detailed properties of the partial ionization zone, but not dra- 
matically. We adopt the ground state of the He atom as the 
zero point of energy. The internal free energy is given by 

Fint=-/cBr2^1n^, (20) 
/=! 

where 

^ = 2^“e"/v (21) 
n 

7 The factor 5 in eq. ( 19) is missing in FGVH. 
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is the internal partition function for species i. Given the sim- 
plifying assumptions discussed above, we have 

Fint = -k*TN2 In 2 + N2xx + N3X2 , (22) 

where xi = 24.587 eV and xi = 79.003 eV are the first and 
second ionization potentials for He (Allen 1973, p. 37). Since 
we consider only the ground state of the two bound species, the 
occupation probability formalism is unnecessary here. 

This free-energy model is admittedly simple, but it neverthe- 
less provides an excellent description of the thermodynamics 
of He in a large part of the phase diagram covered by our cal- 
culation (Fig. 2). In particular, for log T ^ 4.2, where helium 
is entirely atomic or very weakly ionized (at very low density), 
it is very reliable up to the high-density limit of the calculation 
(log p ^ 0) for these temperatures. The He-He potential we 
have used is based on experimental data that probes the He 
EOS in the range log T < 4.3 and -0.5 ^ log p ^ -0.15. By 
construction, the EOS resulting from this free-energy model 
reproduces the experimental data very well. (Nellis et al. 
1984). For log p ^ 1, the SOCP model for the fully ionized 
fluid is very reliable, as is the Debye-Hiickel treatment in the 
region where T ^ 0.1 and He is fully ionized (lower right part 
of the calculation). 

The largest uncertainties in this model are found, not sur- 
prisingly, in the regimes of temperature and pressure ioniza- 
tion, up to the region where both T and 6 are of order unity. 
Future improvements could include ( 1 ) the excited states of 
He and He + , in the occupation probability formalism; (2) the 
plasma microfield; (3) interaction potentials involving He+; 
(4) a two-component plasma (TCP) model for the low-density 
plasma; and ( 5 ) a careful study of pressure ionization. Work in 
this direction is under progress (Aparicio & Chabrier 1995 ). 

4.3. Interpolation 

Since the free energy model for He is inadequate to address 
the problem of pressure ionization, we interpolated to bridge 
the gap between the low- and high-density parts of the EOS, 
just as we have done for hydrogen (§ 3.4). In particular, we 
used cubic spline functions to interpolate P and S separately 
along isotherms, and we computed the internal energy U in the 
interpolation region by integrating equation (6). We adjusted 
the boundaries of this region to provide the smoothest possible 
interpolation, while keeping the density range as narrow as 
possible. The interpolation region ranges roughly from log p = 
-0.5 to 1 ; the exact shape is discussed further in § 8. 

5. CALCULATION OF THE EOS TABLES 

Since our free-energy models are computationally expen- 
sive, especially for the case of hydrogen, it is not possible to 
use the EOS code “on line” in any practical application. The 
alternative is to generate a table of thermodynamic quantities 
for each element covering the density and temperature domain 
of interest and to rely on an accurate interpolation procedure 
in that table. In principle, high accuracy can be achieved by 
using a fine grid for the table. However, the computational 
effort increases with grid resolution, as does the amount of 
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memory occupied by the table in the application code. Our 
choices of boundaries and grid spacings, respectively, are 

2.10 < log T< 7.06, -6.00 < logp < 3.75 , (23) 

A log T= 0.08, A logp = 0.25. (24) 

The exact shapes of the areas in the ( log T, log p ) plane covered 
by the calculations are indicated in Figures 1 and 2 for hy- 
drogen and helium, respectively. We did not compute the EOS 
in the upper left comer of each phase diagram, because our 
models are inadequate to describe the atomic or molecular sol- 
ids or the Coulomb lattice state found under these conditions. 
These phases are unlikely to be interesting from an astrophysi- 
cal point of view. The boundaries of these regions were deter- 
mined by studying the behavior of each EOS in the light of 
the limitations of the corresponding free-energy model and of 
fundamental constraints on the thermodynamics. 

In regions where the EOS is a sensitive function of the den- 
sity, in regimes where the code had difficulties in converging 
to chemical equilibrium, and also to “resolve” the PPT, we 
decreased A log p to a minimum value of A log p = 0.05. After 
computation of the tables, we found that the adopted log T 
spacing was somewhat too coarse for a reliable interpolation 
in the partial temperature-ionization zones. Several additional 
isotherms were thus added in these regions with A log T = 0.04, 
which proved adequate. This agrees with the study of Dorman, 
Irwin, & Pedersen (1991). 

For log p < -6.00, the gas is very nearly ideal, and the EOS 
can be computed with a substantially simplified semi-analytic 
free energy model that includes (1) ideal terms (Maxwell- 
Boltzmann) and (2) a two-component Debye-Hiickel approx- 
imation for the weakly coupled plasma interactions. At such 
low densities, the interactions between neutral particles be- 
come negligible and can be safely ignored. Such a simple model 
can be incorporated as a subroutine in the application code. 
This approach is preferred for a very low density EOS, as it 
reduces the need for an extended table and provides higher ac- 
curacy than can be obtained by table interpolation. 

So far, we have not discussed the contribution of the photon 
gas to the thermodynamics of the system. The coupling be- 
tween radiation and matter in thermodynamic equilibrium is 
very small in the regime where the photon gas contributes sig- 
nificantly to the total pressure (More 1976). This coupling is 
entirely negligible in the domain defined above, so that the 
thermodynamics of the photon gas and of the matter can be 
computed separately and added to obtain a complete EOS. We 
have thus excluded the photon contribution from our EOS ta- 
bles although it appears in some of the figures below. 

Our EOS code has been constructed to compute the EOS 
along a single isotherm, proceeding from lower to higher den- 
sity. For each (p, T) point, the code first computes the chemi- 
cal equilibrium by minimizing the specific (dimensionless) 
Helmholtz free energy. Since we consider four species in each 
EOS, and since chemical equilibrium is constrained by the 
electroneutrality condition and by the definition of the total 
mass density, the problem is actually reduced to a two-dimen- 
sional minimization in concentration space. We perform this 
minimization using an iterative method due to Powell ( Press 

SAUMON, CHABRIER, & VAN HORN 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

5A
pJ

S.
 . 

.9
9.

 .
71

3S
 

No. 2, 1995 EQUATION OF STATE 723 

et al. 1986, § 10.5). We consider the solution to be converged 
when the change in the free energy from one iteration to the 
next is less than one part in 109. Because the free-energy sur- 
face has a rather broad minimum, the corresponding accuracy 
in the concentrations is AX/ æ 10-7. 

The pressure and the entropy are next evaluated by differ- 
entiating the free energy, holding the concentrations constant. 
Temperature and density differentiations are performed nu- 
merically with a simple two-point symmetric scheme using 
Ap/p = 10-4 and ¿ST/T= 10'4. 

On the other hand, second derivatives of the free energy— 
which correspond to the first derivatives of P and S—are not 
obtained by differentiation at fixed concentrations. Computing 
the second derivatives directly from i7 would require additional 
free-energy minimizations to “follow” the chemical equilib- 
rium. This was simply impossible to do with the computers 
available to us. Instead, we have evaluated the second deriva- 
tives after the fact by differentiating the pressure and entropy 
tables as functions of p and T. In principle, this method is not 
as accurate as direct differentiation of F would be if we could 
perform it. Fortunately, because the second derivatives of the 
free energy are not all independent, errors arising in the evalu- 
ation of these derivatives can be estimated by comparing re- 
lated quantities directly (see § 8). 

5.1. Spline Fitting of the EOS Table 

We interpolate in the EOS table with bicubic splines. 
Differentiating the spline fit of the pressure and entropy sur- 
faces provides a simple way of evaluating the second deriva- 
tives of the free energy, with no additional effort. 

5.2. Interpolation near the Plasma Phase Transition 

Because it is a first-order phase transition, the PPT is charac- 
terized by discontinuities in all thermodynamic variables ex- 
cept P, T, and the chemical potentials pz. This requires special 
attention if we wish to have an accurate interpolant near the 
PPT. We have adopted the following procedure to cope with 
this problem. We first generate an EOS table covering the range 
given by equation (23), with the PPT removed by the interpo- 
lation method described in § 3.4. We next generate two smaller 
tables, each with a much finer density grid, by interpolation in 
the original EOS calculation. These two tables each represent 
one of the two phases in the regime of pressure ionization (the 
low- and high-density sides of the PPT), and generous overlap 
prevents discontinuities with the larger table at the edges. The 
boundaries of these two tables are 

3.54 < log T< 4.82, (25) 

with 

—1.0 < logp < 0.1 (PhaseI), (26) 

-0.6 < log p< 0.75 (Phase II), (27) 

and grid spacings given by 

A log 0.08, A logp = 0.025. (28) 

Thermodynamic quantities for each phase are extrapolated 
into and beyond the metastable region in order to obtain the 
rectangular arrays which are used for spline interpolation. 

The hydrogen EOS exists in the form of three overlapping 
tables, as described below, for each of the quantities XHl, XH, 
log P, log S, log U as functions of log p and log T. Given p and 
T, and a knowledge of the coexistence curve (Table 1 ), which 
is fitted and stored as a separate equation, it is possible to iden- 
tify the stable phase of the system and therefore to compute 
any thermodynamic variable of interest by interpolating in the 
appropriate table. 

5.3. Forms of the EOS Tables 

For mixtures of hydrogen and helium, interpolation in com- 
position between the two pure EOS is required. The interpola- 
tion scheme we have adopted requires that the independent 
variables be P and T, instead of the quantities p and T which 
were imposed physically by our choice of the Helmholtz free 
energy as the basic thermodynamic potential. The transforma- 
tion of each thermodynamic quantity W (log p, log T) to IF 
(log P, log T) is easily done using one-dimensional spline in- 
terpolants along each isotherm. Difficulties arise near the criti- 
cal point of the PPT, where dP/dp | r = 0. In this region, inter- 
polation into the {P, T) variables can only be approximate. 
Furthermore, we displaced the critical temperature arbitrarily 
from the calculated value of log = 4.185 to a tabular value 
of log = 4.18 so that Tc falls directly on a tabulated isotherm. 
This small, arbitrary change is well within the uncertainties as- 
sociated with the PPT (SC2) and dramatically improves the 
quality of the interpolation. 

The final EOS tables with P and T as independent variables 
cover the following ranges: 

2.10 < log T< 7.06 4 < log P < 19, (29) 

with A log P = 0.08 and A log P = 0.2. For hydrogen, the two 
PPT tables cover 

3.54 < log P< 4.82, (30) 

10.5 <logP< 12.5 (PhaseI), (31) 

11.6 <logP< 14.1 (PhaseII), (32) 

with grid spacings of A log P = 0.08 and A log P = 0.05. 
To summarize, our new equations of state for hydrogen and 

helium are provided in the form of four tables: one large table 
each for hydrogen and for helium, in which the regimes of pres- 
sure ionization have been artificially smoothed by interpola- 
tion, and two small tables (one for each phase) for the hy- 
drogen PPT. The tables are published in the A AS CD-ROM 
Series, Vol. 5, and a sample is given in Table 2. To minimize 
interpolation errors, the EOS is tabulated along the same P- 
grid as the free-energy-minimization calculation. The indepen- 
dent variables are P and P, and the thermodynamic properties 
of the radiation field are not included. For each (log P, log P) 
entry, we tabulate the following quantities: XH2, XH (XHe and 
XHe+ for the helium EOS), log p, log S, log U, d log p/d log 
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TABLE 2 
Sample Hydrogen EOS Table for log T = 2.10 

logP 
(dyn cm-2) 

*h2 Xu log/) logS logU 
(g cm-3)(ergK-1 g~1)(ergg_1) 

Pt Pp Vad 

4.00 
4.20 
4.40 
4.60 
4.80 
5.00 
5.20 
5.40 
5.60 
5.80 
6.00 
6.20 
6.40 
6.60 
6.80 
7.00 
7.20 
7.40 
7.60 
7.80 
8.00 
8.20 
8.40 
8.60 
8.80 
9.00 
9.20 
9.40 
9.60 
9.80 

1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
1.00000E+00 
l.OOOOOE+OO 
1.00000E+00 
1.00000E+00 
l.OOOOOE-fOO 

O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE-f-OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
0.00000E+00 
O.OOOOOE+OO 
0.00000E+00 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 
O.OOOOOE+OO 

-5.7154 
-5.5154 
-5.3154 
-5.1154 
-4.9154 
-4.7154 
-4.5154 
-4.3154 
-4.1155 
-3.9155 
-3.7156 
-3.5157 
-3.3158 
-3.1161 
-2.9165 
-2.7171 
-2.5182 
-2.3200 
-2.1232 
-1.9291 
-1.7407 
-1.5641 
-1.4086 
-1.2811 
-1.1795 
-1.0962 
-1.0261 
-0.9652 
-0.9101 
-0.8578 

8.8910 
8.8803 
8.8693 
8.8580 
8.8464 
8.8345 
8.8222 
8.8096 
8.7966 
8.7832 
8.7694 
8.7551 
8.7403 
8.7250 
8.7090 
8.6923 
8.6749 
8.6565 
8.6369 
8.6158 
8.5930 
8.5683 
8.5421 
8.5157 
8.4897 
8.4634 
8.4361 
8.4078 
8.3787 
8.3490 

10.1201 
10.1201 
10.1201 
10.1201 
10.1201 
10.1200 
10.1200 
10.1200 
10.1200 
10.1199 
10.1198 
10.1196 
10.1193 
10.1189 
10.1182 
10.1171 
10.1154 
10.1127 
10.1082 
10.1015 
10.0905 
10.0739 
10.0572 
10.0339 
10.0069 
9.9935 
10.0054 
10.0469 
10.1127 
10.1973 

-1.0000 
-1.0000 
-1.0000 
-1.0000 
-1.0001 
-1.0001 
-1.0002 
-1.0003 
-1.0005 
-1.0008 
-1.0012 
-1.0019 
-1.0031 
-1.0048 
-1.0076 
-1.0119 
-1.0184 
-1.0278 
-1.0408 
-1.0544 
-1.0603 
-1.0215 
-0.9086 
-0.7183 
-0.5377 
-0.3942 
-0.2819 
-0.1962 
-0.1314 
-0.0833 

1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
1.0000 
0.9999 
0.9999 
0.9999 
0.9998 
0.9996 
0.9994 
0.9990 
0.9985 
0.9975 
0.9959 
0.9931 
0.9882 
0.9787 
0.9599 
0.9195 
0.8380 
0.7097 
0.5676 
0.4566 
0.3798 
0.3244 
0.2875 
0.2663 
0.2578 

0.1687 
0.1729 
0.1773 
0.1820 
0.1869 
0.1921 
0.1976 
0.2034 
0.2096 
0.2162 
0.2233 
0.2309 
0.2392 
0.2482 
0.2581 
0.2693 
0.2821 
0.2973 
0.3159 
0.3394 
0.3686 
0.4052 
0.4370 
0.4532 
0.4803 
0.5104 
0.5271 
0.5173 
0.4937 
0.4751 

-0.0530 
-0.0543 
-0.0557 
-0.0572 
-0.0588 
-0.0604 
-0.0621 
-0.0640 
-0.0659 
-0.0680 
-0.0703 
-0.0727 
-0.0753 
-0.0782 
-0.0815 
-0.0852 
-0.0895 
-0.0948 
-0.1013 
-0.1094 
-0.1189 
-0.1282 
-0.1325 
-0.1308 
-0.1302 
-0.1335 
-0.1389 
-0.1440 
-0.1473 
-0.1494 

0.3142 
0.3144 
0.3144 
0.3144 
0.3144 
0.3144 
0.3145 
0.3145 
0.3145 
0.3146 
0.3147 
0.3148 
0.3150 
0.3153 
0.3157 
0.3164 
0.3173 
0.3187 
0.3205 
0.3225 
0.3226 
0.3165 
0.3031 
0.2886 
0.2711 
0.2615 
0.2635 
0.2784 
0.2983 
0.3145 

a See eq. (42). 

T\P, d log p/d log P\T,d log S/d log T\p, d log S/d log P\T, 
and the adiabatic gradient, Vad. The concentrations X/ are ob- 
tained by minimizing the Helmholtz free energy F, and P and 
S are obtained by numerically differentiating F. The internal 
energy is obtained from the definition U = F + TS, and the 
derivatives of p and S are computed by differentiating bicubic 
spline fits of the surfaces of log p (log F, log P) and log S (log 
F, log P). Other quantities of interest can be obtained from 
these partial derivatives. Because of the numerical inaccuracies 
introduced into U by integrating eq. (6), it is preferable to 
differentiate S rather than U. We use cgs units throughout, 
with S in ergs g-1 K-1 and U in ergs g-1. The zero point of 
energy is taken to be that of the ground state of the H2 molecule 
for the hydrogen EOS and that of the ground state of the He 
atom for helium. 

The concentrations are defined as 

(33) 

where N is the total number of particles, including electrons. 
With this definition, and considering charge conservation, we 
have for pure hydrogen 

X, = Xh+=U1-Xh2-Xh), (34) 

and for pure helium 

X, = XHe+ + 2XHe^ =\{2~ 2XHe ~ XHe+) • (35) 

The corresponding number densities of species i are given 
by 

rit = 
2p/ mH 

1 + 3Xh2 + XH 
X; 

for hydrogen species, and 

3p/mHe x 

l+2XHe+XHe+ 

(36) 

(37) 

for helium species, where mH = 1.67357 X 10-24 g and mHe = 
6.646442 X 10-24 g are the masses of the hydrogen and helium 
atoms, respectively. As stated in § 5, the concentrations result- 
ing from the free-energy minimization are of limited accuracy. 
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Moreover, in the interpolation regions of both the H and He 
EOS the concentrations have very little physical basis but are 
reasonably well behaved by construction. Therefore, they 
should not be used when very high accuracy is required, espe- 
cially when Xi 1 for the species of interest. They are provided 
with the EOS tabulation only because they are required for the 
calculation of the entropy of mixing discussed in the next sec- 
tion. 

6. HYDROGEN AND HELIUM MIXTURES 

In most astrophysical problems, hydrogen and helium are 
not found as pure elements, but are mixed together. It is highly 
desirable to have an EOS for such mixtures. In practice, it is 
best to generate a set of tables for H/He mixtures correspond- 
ing to a few values for the helium mass fraction 0 < T < 1 and 
to interpolate between these tables to obtain an EOS for the 
desired composition. Unfortunately, the complexity of the 
free-energy model for hydrogen ( and of that for helium, if it 
were comparable in its level of description of the physics) ren- 
ders such a project unrealistic at this time. A model for a H/ 
He mixture requires a knowledge of the interaction potentials 
between the various hydrogen and helium species. These are 
mostly unavailable. In addition, the free-energy minimization 
would have to be performed in a four-dimensional concentra- 
tion space, instead of the current two-dimensional cases. This 
would require an enormous amount of computer time. For the 
present, the practical solution is to interpolate in composition 
between the two pure EOS. 

Several schemes for interpolation in composition have been 
discussed and compared by Fontaine et al. ( 1977 ). Their study 
shows that the “additive-volume rule” is superior among those 
tested. Dorman et al. ( 1991 ) also found that it provides satis- 
factory results, even for interpolation between pure-composi- 
tion EOS. 

The additive-volume rule is based on the fundamental prop- 
erties of thermodynamic variables. Intensive variables, such as 
the temperature and pressure, must be uniform throughout a 
system in equilibrium. On the other hand, the volume, en- 
tropy, internal energy, etc., are extensive variables and are 
strictly additive for identical systems. This additivity is not 
valid in general for nonidentical systems, although it is exact in 
the limit of the ideal, noninteracting gas where no chemical 
reactions occur. For the fully pressure-ionized gas, numerous 
simulations have demonstrated the high accuracy of the “lin- 
ear mixing rule,” which is a particular form of the additive- 
volume rule that holds when the pressure is dominated by the 
degenerate electron gas (Brami, Hansen, & Joly 1979; Cha- 
brier & Ashcroft 1990). In essence, the additive-volume rule 
considers the combined system of equations of state for sub- 
systems which are brought into contact, but not allowed to mix 
microscopically. 

Clearly, the additive-volume rule cannot be exact, since it 
ignores interactions between the helium species and the hy- 
drogen species. Similarly, in an actual mixture, the ionization 
equilibria of hydrogen and helium are coupled through the 
electron density. This is not accounted for in the additive-vol- 
ume rule, and since it cannot predict the correct chemical equi- 
librium for the mixture, it is not as reliable in regions of partial 
ionization. These two problems are compounded in the case of 

pressure ionization, where mutual interactions are strong. In 
particular, we expect that the location, the nature, and possibly 
the very existence of the hydrogen PPT will be affected by the 
presence of helium. In this particular regime, the additive-vol- 
ume rule preserves the PPT and its coexistence curve in the (P, 
T) plane, but it can only be a simple and convenient method 
at best. Similarly, it is not possible to address the possibility of 
immiscibility of helium in fully pressure-ionized hydrogen 
with an EOS interpolated in composition, since the immisci- 
bility arises from the H-He interactions. 

For a specific extensive variable W for a combination of sub- 
systems at pressure P and temperature T, the additive-volume 
rule states that (a derivation is given in Fontaine et al. 1977 ) 

W(P, T) = 2 XiW'^P, T), (38) 

where X/ is the fraction of the total system occupied by subsys- 
tem i. For example, in the case of hydrogen and helium mix- 
tures, the density (which is an inverse specific volume, an ex- 
tensive quantity) is given by 

1 1 - Y 
+ - 

p(P, T) pH(P, T) pHe(P, T) ’ 
(39) 

where Y is the helium mass fraction. Similarly, the internal 
energy per unit mass is given by 

U(P, T) = ( \ - Y)Uh(P, T)+ YUHe(P, T). (40) 

The entropy per gram is interpolated in the same way, except 
that we supplement the additive-volume rule with a correction 
for the ideal entropy of mixing of the gases. This term is neces- 
sary in order to recover the ideal-gas limit, and it is relevant 
only because the chemical equilibria of the two subsystems are 
T- and P-dependent. Otherwise, the entropy of mixing would 
be constant and could simply be ignored. Of course, the true 
entropy of mixing of H and He must take interactions into 
account and can only be calculated by solving the full EOS 
problem for the mixture. In the approximation we have used, 
we thus write the interpolated entropy as 

S(P, T) = (l- Y)Sh(P, T) 

+ YSHe(P,T) + Smix(P,T). (41) 

The derivatives of 5(P, T) and p(P, T) can be obtained by 
differentiating equations (39) and (41). Using the following 
notation for the logarithmic derivatives, 

Pt z dlogp 
dlogP Pp : dlogp 

d logP 
(42) 

and with similar definitions for SVand SP, we have 

pr=(l-7)^p?+r-^p?% (43) 
P p 

Pp _ / 1 \r\ P Hi \r _P_ He - ( 1 “ L ) UPP + Y „ pp , (44) 
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^=d-r)¿^ + ^^e + 
*Smix d log Smjx 

s d log r 

o _/i S oH I y ^ oHe I ^mix ^ SP-(l-Y)¥iSP+Y^reSP + ^ alogp 

(45) 

(46) 

1 - Y 
X {In( 1 + 07) 

wîh ( 1 + -Y» + 3Xh2) 

-X»ln(l +ô) + /?7[ln(l + I/1S7) 

— X”eln(l + l/ô)]}, (53) 

Other quantities, such as the adiabatic temperature gradient 
should not be interpolated using the additive-volume rule; in- 
stead they should be obtained from their definition in terms of 
the quantities given above. For example, 

ß = 
mu Y 
mue 1 Y ’ 

(54) 

d log T Sp 
<3 log F 5 ST 

(47) 3 ( 1 + XH + 33Th2) 

2(l+2XHe + XHe+)’ 

The ideal entropy of mixing of m systems each containing 
Ni particles is 8 = 3(2-2jrHe-3fHe+) 

2(1 -Xu2-Xu) 
(56) 

SmJkB = N\nN- 2#,ln Nt, (48) 
(=i 

where 

m 
N='ZNi (49) 

i=\ 

is the total number of particles. Combining a pure hydrogen 
subsystem containing .UH particles (of all hydrogen species, 
including the “hydrogen” electrons) and a pure helium subsys- 
tem of ^ He particles, yields the total entropy of mixing as 

= (>h + ^He)In Oh + ^He) - Ah2 InNH2 KB 

— Nh In Ah ~ Ah
+ In Nn+ — Ne In Ne — Ahc In Ahc 

-AHe-lnAHe--AHe^lnAHe^. (50) 

The concentrations required to evaluate Sm{x{P, T) are tabu- 
lated with the EOS. It is straightforward to diiferentiate Smix(P, 
T) as needed for the evaluation of ST and SP\ the P and T 
derivatives of the concentrations X/ can be evaluated numeri- 
cally from the tables. Figure 3 shows contours of the dimen- 
sionless entropy of mixing (5^/^/nucleus) for Y = 0.25, us- 
ing the H EOS with the PPT. As expected, ¿w increases in 
regions of partial dissociation and ionization and is otherwise 
constant. 

7. THERMODYNAMICS OF HYDROGEN AND HELIUM 

The equation-of-state tables for H and He embody a large 
amount of information which is best visualized with surface 
plots. In this section, we present the interpolated EOS for hy- 
drogen and for helium, with p and T as independent variables. 
The contribution of the photon gas is included in the following 
figures (but not in the EOS tables). These figures show the en- 

Here Ne is the total number of electrons. However, the entropy 
of mixing of the various hydrogen species, including the free 
electrons provided by hydrogen, is naturally taken into ac- 
count in the H EOS. This is also true of the helium species in 
the He EOS. Removing these two contributions to the above 
expression, we find the entropy of mixing which arises only 
from the mixing of hydrogen and helium, 

^=XHln( 1 + 
~Vt- 

+ ln 1 T- 
-Yu) \ ^He/ 

- AUn NP + V” In TV? + N^e In . (51) 

where A” and A^e are the number of electrons provided by 
hydrogen and by helium, respectively, and 

A^A^ + A*6. (52) 

Using the definition of the concentrations and number densi- 
ties ( eqs. [ 33 ] - [ 37 ] ), we obtain the mixing entropy per gram 
in the form 

Fig . 3.—Contour plot of the dimensionless entropy of mixing per nu- 
cleus, for Y = 0.25. The contour levels are separated by 0.005, and the thick 
curve corresponds to Sm\x/kB = 0.25. In the lower left-hand comer of the 
plot, = 0.222, and along the log T = 7.06 isotherm, S^/k^ = 
0.284. 
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tire range of the EOS in these variables and are more easily 
interpreted in conjunction with the phase diagrams (Figs. 1 
and 2). 

7.1. Hydrogen 

Figure 4 shows the pressure surface. At low temperatures 
and low densities, hydrogen exists in the form of an ideal gas of 
H2 molecules and the pressure is linear in T and p. Molecular 
dissociation and ionization increase the number of particles in 
the system, causing the two ripples seen at low densities. At 
high temperatures and low densities, radiation pressure domi- 
nates, and P rises as T4. At the high-density limit of the figure, 
the pressure also rises rapidly. At low temperatures, this is 
caused by the strong repulsive forces between H2 molecules. 
For higher temperatures, the EOS calculation for hydrogen 
reaches the regime of full pressure-ionization, and the pressure 
is dominated by the electron gas and Coulomb interactions, 
with P cc p5/3 in the limit of complete electron degeneracy. 

The entropy (Fig. 5), on the other hand, shows very little 
variation throughout the whole range covered by our calcula- 
tion, except for the region where the radiation gas dominates 
(S ~ T3). The effect of electron degeneracy, which makes an 
important contribution to the total pressure, is all but invisible 
in this figure, since the entropy of the electron gas vanishes 
in the limit of complete degeneracy. Everywhere S increases 
monotonically as a function of T, ensuring that the specific 
heat is positive, a fundamental constraint on the EOS. The en- 
tropy increases in the regions of dissociation and ionization, 
where the increasing numbers of particles increases the degree 

Fig. 5.—Entropy surface for hydrogen. The entropy S is in ergs 
g-1 K-1. 

of disorder of the system. Conversely, S decreases slowly as the 
density increases, reflecting the gradual ordering of the system. 
This is not a thermodynamic constraint, but it is generally true 
in a given phase. Exceptions to this rule are found near phase 
transitions, and indeed we find dS/dp | t’ > 0 in a small area 
centered on the critical point of the PPT ( not shown in Fig. 5 ). 
It follows from this result and from thermodynamic identities 
that the thermal expansion coefficient (dP/dT\ p) and the adia- 
batic gradient Vad are also negative in this same region. 

The internal energy surface shows the same features as the 
pressure surface, but more clearly ( Fig. 6 ). For ideal H2 at tem- 
peratures well below the characteristic vibration temperature 
( 0vib = 6100 K ), C/ = |/cB T/ mH2. On the very lowest isotherms, 
U drops below this ideal gas value around log p ^ — 1 (barely 
visible on the scale of Fig. 6 but see Table 2). This effect origi- 
nates in the long-range van der Waals attraction between mol- 
ecules. The depth of this feature decreases rapidly when kBT$> 
e where e is the depth of the potential well ( €//:b = 32 K for the 
H2-H2 potential). As the density is increased further, mole- 
cules feel the short-range repulsion, and U increases rapidly. 
As is the case for the entropy, U is increased significantly by 
dissociation and ionization. This is caused by the increase in 
the number of particles and by the contribution from the dis- 
sociation and ionization energies (which do not appear in S). 

In the second-derivative surfaces of the free energy, which 
are derivatives of the P and S surfaces shown in Figures 4 and 
5, respectively, the features we have discussed are greatly am- 
plified. This is also true of any defects in the EOS, such as may 
arise from flaws in the Helmholtz free-energy model or from 
numerical inaccuracies in the calculation. In view of the nu- 
merous steps involved in our calculations of the second deriv- 
atives, we expect them to show some level of numerical noise, 
as they typically do in this type of EOS work (the EOS of Däp- 
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Fig. 6.—Internal energy surface for hydrogen. The internal energy U 
is in ergs g-1. 

pen et al. 1988 is a notable exception, because their model 
yields analytic expressions for the second derivatives). 

Figure 7 shows the logarithmic derivative of the pressure 
with respect to the temperature, xr = d log P/d log T| p. For an 
ideal gas of particles, xr ^ 1* The two parallel ridges in Figure 
la, at log T ^ 3.4 and log T7 ^ 4.1 correspond to molecular 

dissociation and ionization of hydrogen atoms, respectively. 
Atomic hydrogen dominates the chemical equilibrium com- 
position in the narrow region in between. The apparent irregu- 
larities in these ridges are plotting artifacts. In the high-temper- 
ature, low-density region, we have xr = 4, the value 
appropriate to a pure radiation gas. Figure lb shows the same 
surface plotted at a different viewing angle. The quantity xt 
drops rapidly with increasing density in the dense molecular 
fluid because of the strong nonideal behavior of the molecules; 
the molecular repulsion becomes nearly independent of tem- 
perature at high densities, and xr 0. A similar behavior is 
seen at higher temperatures, however, but for a very different 
reason. In the regime in which hydrogen is fully pressure-ion- 
ized, the pressure is dominated by the degenerate electron gas, 
and P is again independent of T. Some spurious structure is 
seen between these two regimes, in regions where the EOS was 
interpolated. In the hydrogen EOS with the PPT, xr becomes 
negative in a small region near the critical point ( not shown ). 

The logarithmic density derivative of the pressure, xP = 
d log P/d log p I r is shown in Figure 8. Mechanical stability of 
the EOS requires that this quantity, which is a measure of the 
stiffness of the EOS, be positive. A few limiting regimes are 
readily identified in this surface. For an ideal gas, we have xP 

= 

1, and Xp drops to 0 for the photon gas, whose pressure depends 
only on T. The high-T, high-p plateau corresponds to the de- 
generate electron gas regime, which asymptotically reaches 
Xp = § in the limit of complete degeneracy. The dramatic rise 
of Xp with density in the dense molecular regime shows the 
importance of nonideal effects due to interactions between the 
molecules. Not only is it necessary to take these effects into 
account in this part of the phase diagram, but because they 
come to dominate the contribution of the ideal H2 fluid, they 

Fig. la Fig. lb 

Fig . 7.—{a-b) Temperature derivative of the pressure surface for hydrogen, xr = d log P/d log T| at two different viewing angles 
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Fig. 8.—Density derivative of the pressure surface for hydrogen, xP = 
<9 log T/a log p I r. 

Fig . 9.—Surface of the specific heat at constant pressure for hydrogen, 
in ergs g_1 K_1. The rapidly rising peak is arbitrarily truncated at log CP = 
13 for scaling purposes. 

must be modeled in a realistic fashion. Two shallow valleys 
again display changes in the chemical equilibrium of the sys- 
tem as T is increased. The effect is not as large in xP as in 
since temperature dissociation and ionization depend mostly 
on T and not p, as can be understood from the slopes of the 
dashed lines in Figure 1. Were these lines vertical in the phase 
diagram, the two valleys in Figure 8 would vanish. The inter- 
polation region again shows non-physical structure. In the 
EOS with the PPT, we find xP ^ 0 identically at the critical 
point, as is required by definition. 

The specific heat at constant pressure, CP, is shown in Figure 
9. The fundamental thermodynamic constraints of stability of 
the EOS require that CP> 0 everywhere. In terms of the inde- 
pendent variables p and T, CP is a function of three partial 
derivatives of the free energy: 

0= 
dT dT 

+ I.Û 
pT xP * 

(57) 

Since each second-derivative surface carries its own flaws and 
spurious features, the specific heat at constant pressure, which 
combines three of them, is particularly sensitive to these inac- 
curacies. The specific heat of the ideal gas (low density) in- 
creases as the fluid becomes successively molecular (H2), 
atomic (H), and finally fully ionized (H+ and e). Because of 
( 1 ) the increase in the number density of particles and (2) the 
substantial energy involved in the dissociation of the molecule 
and the subsequent ionization of the atom, the specific heat 
reaches local maxima in the partial dissociation and ionization 
zones. For a pure photon gas, CP diverges, and the very rapid 
rise seen at high temperatures reflects the diminishing contri- 
bution of matter to the EOS. The irregular depression in Figure 
9 corresponds to the interpolation region of the hydrogen EOS, 

where a variety of flaws combine. In this region, CP is rather 
inaccurate. The irregular behavior of the specific heat along 
the high-density edge of the table is caused by difficulties in 
interpolating and differentiating at the table boundary. 

We display the adiabatic temperature gradient in Figure 10. 
This quantity plays a central role in theories of convection and 

Fig. 10.—The adiabatic gradient surface for hydrogen, Vad = dlogT/ 
d log P\s- 
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pulsation. In terms of the independent variables p and T, we 
have 

dlogr = pST Xp à log 5 
dlogP^ XT P Xrd log T p ’ 

(58) 

this expression also involves three second derivatives of the free 
energy. As a consequence, we expect Vad to be noisier than the 
first derivatives of S and P. A number of familiar features are 
readily identified in this surface. The adiabatic gradient of an 
ideal monatomic gas is 0.4, a value approximated by the low- 
density plasma and nearly reached in the narrow region domi- 
nated by atomic hydrogen. Molecular dissociation and tem- 
perature ionization carve two deep “valleys” in the Vad surface. 
Such dramatic drops in the value of the adiabatic gradient 
greatly favor the onset of convection in stars. For a pure photon 
gas, we have Vad = 0.25, which is the value of the high-temper- 
ature, low-density plateau in Figure 10. Because of the internal 
structure of H2, Vad ^ 0.4 for the ideal molecular fluid. The 
rotation temperature of H2 is 6TOi = 85 K and not all rotational 
levels are populated at the low-temperature end of Figure 10. 
As Tincreases, Vad decreases to f ^ 0.286, the value for a clas- 
sical, rigid rotating molecule with 2 degrees of rotational free- 
dom and 3 degrees of translational freedom. This situation is 
realized when T > 0rot, but with T 0vib. At low densities, 
molecular dissociation occurs before significant vibrational ex- 
citation takes place. The adiabatic temperature gradient sur- 
face is rather rugged in the interpolation region, with large, un- 
physical excursions from the surrounding smooth surface. A 
few large peaks are also found at the high-density edge of the 
figure. They are caused by edge effects in the interpolation/ 
differentiation of the S and P surfaces. 

The irregularities in the EOS surfaces are most obviously 
present in the interpolated region. They are partly caused by 
the fact that we have interpolated along isotherms, and there- 
fore the temperature derivatives of S and P are not as smooth 
as the density derivatives. Some of the problems seen in CP and 
Vad arise from our separate interpolation of the entropy and of 
the pressure, which introduces thermodynamic inconsistency 
into the EOS (see § 8 below). 

In § 9, where we compare our H EOS with other equations 
of state, we discuss some of the features described above in 
more quantitative detail. 

7.2. Helium 

The He EOS surfaces are shown in Figures 11-17. They are 
qualitatively very similar to the corresponding figures for hy- 
drogen. The main differences are 

1. Helium does not form molecules and has a high first-ex- 
citation energy. It behaves very much like a monatomic fluid 
without internal structure up to temperatures where ionization 
begins (log 4.1). 

2. While there is no molecular dissociation region for He, 
temperature ionization occurs in two stages, first to He+ and 
then to He2+. These two ionization zones are more closely 
spaced in temperature than are the dissociation and ionization 
zones of hydrogen. 

If * 

Fig . 11.—Pressure surface for helium. The pressure P is in dyn cm 

3. The atomic He fluid does not interact as strongly as the 
molecular H2 fluid. 

4. Coulomb forces are stronger in the fully ionized He 
plasma due to the higher charge of the ions. 

Figures 11-13 show the surfaces for the pressure, entropy, 
and internal energy, respectively. Physical regimes similar to 

$ 

Gi N 

0 
Q) N 

Fig. 12.—Entropy surface for helium. The entropy »Sis in ergs g *K *. 
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Fig. 13.—Internal energy surface for helium. The internal energy Uis 
in ergsg-1. 

those discussed above for hydrogen can also be identified on 
these figures. 

Figure 14 shows xr- It remains close to the ideal-gas value 
Xr = 1 over a much wider range in temperature and density 
than is the case for hydrogen, due to the eifectively structureless 
and monatomic nature of the He fluid. Two well-defined ridges 
correspond to the two ionization stages of helium. The bumps 

on the crests of these ridges are plotting artifacts. Figure 14Z> 
shows the same surface from a different viewing angle, empha- 
sizing the high-density behavior of xr- The rapid decreases in 
Xr at low T resulting from the He-He interactions and at high 
T resulting from electron degeneracy are readily apparent. The 
irregular structure apparent in the intermediate regime again 
corresponds to the interpolation region and has no physical 
basis. 

The Xp surface for He (Fig. 15 ) is very similar to that for H 
(Fig. 8). The He-He repulsion in the dense atomic fluid phase 
is not as strong as the H2-H2 repulsion; this is reflected in the 
lower values of xP for He in this regime. The asymptotic value 
Xp = 3 for the very dense, fully ionized plasma dominated by 
electron degeneracy pressure is reached at higher densities than 
in the case for hydrogen because of the stronger Coulomb in- 
teraction between the doubly charged He2+ ions. While some 
irregular behavior is noticeable in the interpolation region, the 
Xp surface is generally rather smooth. 

The specific heat at constant pressure (Fig. 16) is also quite 
smooth, even in the interpolation region, where there is a de- 
pression in CP. This depression is probably not real. This fea- 
ture is not nearly as deep as in the case of hydrogen (Fig. 9), 
because of the wider density range used for the He EOS inter- 
polation. 

Three spurious large-amplitude peaks in the adiabatic gradi- 
ent surface (Fig. 17) result from edge effects in interpolation/ 
differentiation of the P and S surfaces and have no physical 
basis. 

8. THERMODYNAMIC CONSISTENCY 

The preceding discussion demonstrates that the second de- 
rivatives of the free energy are very sensitive to the details of 
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Fig. 15.—Density derivative of the pressure surface for helium, xP 
= 

a log p/a log p i r. 

the EOS calculation and are apt to reveal flaws at a glance. An 
even more sensitive test of an EOS is thermodynamic consis- 
tency, which—like the fundamental constraints of stability of 
the EOS—is a necessary but not sufficient condition to ensure 
accuracy. Since all equilibrium thermodynamic quantities are 
obtained by taking derivatives of a single function, the Helm- 
holtz free energy F, the quantities which correspond to mixed 

partial derivatives of F are related. The well-known Maxwell 
relations follow from this fact. If some region of the EOS does 
not satisfy the Maxwell relations, it is said to be thermodynam- 
ically inconsistent in this region. For the quantities of interest 
here, and with our choice of Fand T as independent variables, 
the Maxwell relation of principal interest is 

? 

Fig. 16.—Surface of the specific heat at constant pressure for helium, 
in ergs g-1 K“1. The rapidly rising peak is arbitrarily truncated at log CP = 
13 for scaling purposes. 

dS 
dP T,{Nj} 

dV_ 
dT 

(59) 
P,{Nj} 

In terms of the mass density p, and defining S as the entropy 
per unit mass, we obtain 

dp 
dT = P2 dS 

dP 
(60) 

It can be shown that the particle numbers of each species Nj 
need not be held constant when taking the derivatives in eq. 
(60) if they are at their chemical equilibrium values for all P 
and T. We thus define the following index, 

1 dp 
^df 

dS 
dP 

- 1 (61) 

which vanishes where the EOS is thermodynamically consis- 
tent. 

In Figure 18, contours of a are shown for the interpolated 
hydrogen EOS. The boundaries of the interpolation region are 
indicated by the heavy solid lines forming an irregular box cen- 
tered on log T ^ 4 and log F ^ 13. The contours are plotted at 
the following levels: a = ( ±)0.01,0.032,0.1,0.316, and 1, with 
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Fig. 18.—Contours of the thermodynamic consistency index a (eq. 
[61]) over the entire interpolated hydrogen EOS table. Positive and nega- 
tive contours are represented by solid and dashed lines, respectively. The 
contour levels are ( ±) 0.01,0.032,0.1,0.316, and 1, i.e., they are separated 
by 0.5 dex. Shaded areas correspond to | « | > 0.1. See text. 

negative values indicated by dashed contours. The shaded area 
corresponds to | a | >0.1. This figure covers the entire (P,T) 
range of the EOS. 

A number of features are immediately apparent. For 
log F < 10, thermodynamic inconsistency up to the 3%-5% 
level is associated with the temperature dissociation and ion- 
ization zones. As discussed above, P and S vary rapidly with 
temperature over these narrow zones. While the P and S sur- 
faces may be completely thermodynamically consistent with 
each other, the bicubic spline interpolant does not necessarily 
estimate the derivatives accurately (in this case, dp/dT\P), in- 
troducing oscillations in a. Adding isotherms to the EOS table 
with a spacing of A log T = 0.04 improved the accuracy of the 
spline fitting remarkably but more are needed to remove this 
blemish entirely. This also indicates that an isotherm spacing 
of no more than A log T = 0.04 is necessary for accurate differ- 
entiation of the EOS in the partial ionization zones. Along the 
high-pressure boundary of the table, consistency is not very 
good, with a usually below 10%, but with a few isolated peaks 
up to 30%. This is clearly due to an edge effect in the spline 
interpolation, made even more apparent by the cellular pattern 
in the contours at the highest pressures. This cell size corre- 
sponds to the grid size in the EOS computation in the (p, T) 
plane. Finally, the worst departures from thermodynamic con- 
sistency are found in the interpolated region. This was antici- 
pated from the fact that P and S were interpolated separately 
and is obvious from the relation between the contour pattern 
and the boundaries of the extrapolated region. The signature 
of the A log T = 0.08 spacing of the isotherms is also clear. 
Attempts to decrease \a \ by adjusting the interpolated surfaces 
locally proved unsuccessful. 

Figure 19 shows the contours of a near the PPT of hydrogen 
on an expanded scale. The coexistence curve of the PPT is 
shown by the heavy solid curve. The features away from the 
PPT are identical to those of Figure 18, since both hydrogen 
EOS are the same outside the interpolation region. Just below 

Fig . 19.—Contours of the thermodynamic consistency index a around 
the plasma phase transition of the hydrogen EOS. The coexistence curve 
of the PPT is shown by the heavy solid curve. See caption for Fig. 18. 

the PPT the effect of grid spacing is obvious in the cellular pat- 
tern of the contours. A finer T-grid would be desirable in this 
region. Above the PPT, severe departures from thermody- 
namic consistency are found. Even if the FMIN method guar- 
antees thermodynamic consistency in principle, violations can 
arise in two ways: ( 1 ) the steps Ap and AT used to differentiate 
F to get P and S, respectively, can become too large near the 
PPT for an accurate calculation of P and S, and ( 2 ) the bicubic 
spline interpolant is ill behaved near the PPT, and it leads to 
poor values for the second derivatives of F. On the other hand, 
the extended ridge between log P ^ 13.0 and 13.5 is caused by 
the second interpolation performed to remove the discontinu- 
ous and unphysical behavior of the EOS in this regime (see 
§ 3.3.1 ). In this case, it is dS/dp \ T which is erroneous. 

The departures from thermodynamic consistency in the he- 
lium EOS ( Fig. 20 ) share similarities with the case of hydrogen. 

Fig. 20.—Contours of the thermodynamic consistency index a over 
the entire (interpolated) helium EOS table. See caption for Fig. 18. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 9

5A
pJ

S.
 . 

.9
9.

 .
71

3S
 

734 

The interpolation region for the He EOS is outlined with a 
heavy solid line. The interpolation region for He is more ex- 
tensive than that for hydrogen because of the limitations of the 
low-density model we have used for the Helmholtz free energy 
of He (§ 4.2). Except for a few isolated regions, thermody- 
namic consistency to within a few percent is achieved for both 
the hydrogen and the helium EOS. While the EMIN method 
guarantees thermodynamic consistency in principle, numeri- 
cal errors creep in at various stages of the calculation, particu- 
larly in the evaluation of the derivatives of S and P with a spline 
interpolant. These can be removed by computing the EOS on 
a finer grid. The largest departures from thermodynamic con- 
sistency typically occur in the interpolated regions of the EOS, 
as anticipated. This is caused by our decision to reduce the 
density range of the interpolation as much as possible and by 
interpolating P and S separately. This improves the accuracy 
of S and P separately, but at the cost of thermodynamic con- 
sistency. 

9. COMPARISON WITH OTHER HYDROGEN EOS 

Except for analytic calculations valid only over limited re- 
gimes of p and T, most EOS calculations involve a large num- 
ber of approximations and assumptions as well as some level of 
internal inconsistency, as exemplified by the above discussion. 
This makes it difficult both to judge which of the available EOS 
is the most appropriate for a given astrophysical problem and 
also to assess its degree of reliability. It is usually very difficult 
to answer such questions from the published literature alone. 
A direct, numerical comparison among different EOS tables, 
computed with different underlying assumptions, is essential 
to reveal flaws and poor approximations and to develop a 
healthy appreciation of the uncertainties that persist in some 
physical regimes. This section is devoted to a comparison of 
the present hydrogen EOS with other equations of state often 
used in astrophysics. 

In the spirit of clarity and conciseness, the comparison we 
have performed is limited to five hydrogen equations of state: 
the table of Fontaine et al. (1977); the pure H case of the 
H/He EOS of Magni & Mazzitelli8 ( 1979); a pure hydrogen 
calculation based on the model developed by Mihalas, Hum- 
mer, & Däppen (Däppen et al. 1988 and references therein); 
the SESAME library material 5251 EOS, developed at the Los 
Alamos National Laboratory (Kerley 1972); and the present 
EOS. Hereafter, these five equations of state are denoted by 
FGVH, MM, MHD, LANL, and SC, respectively. 

These EOS span over 20 years of effort in developing rehable 
EOS for stellar envelopes and interiors, and they are represen- 
tative of the better EOS currently in use. Except for the SC 
EOS, they have been used extensively in a variety of astrophys- 
ical contexts (see Chabrier et al. 1992, however). While they 
have a number of features in common, they differ greatly in 
detail, in the level of statistical mechanical consistency of the 
model, and in the accuracy of the modeled contributions to the 
free energy. 

The LANL EOS is actually a deuterium EOS scaled in den- 
sity. Most contributions to the free energy of deuterium scale 

8 Our study of the MM EOS table which we obtained in 1987 shows that 
it is much improved over the version published in Magni & Mazzitelli 
(1979). 

Vol. 99 

exactly in density but the procedure is not appropriate in the 
molecular phase. The energy levels of the molecule depend 
upon the moment of inertia and the reduced mass of D2 which 
are twice as large as for H2. While this does not affect the pres- 
sure in the molecular phase, the internal energy of the LANL 
EOS is overestimated by up to 6% for log T ^ 3.3 (Saumon & 
Van Horn 1987). 

9.1. EOS Comparison along Isotherms 

To minimize spurious errors, we have avoided numerical 
interpolation in the tables as much as possible. To this end, we 
selected six isotherms common to four EOS: log7,= 3.70,4.10, 
4.50, 5.30,6.10, and 6.90. The last three isotherms are not tab- 
ulated by MM, and we performed the necessary temperature 
interpolation using a program provided with their table. The 
LANL EOS has no isotherm in common with the other four 
EOS, so we interpolated it linearly in log T. The figures below 
show the density points of the original tables connected by 
straight lines; the EOS were not “smoothed.” However, it has 
been noted before that the FGVH EOS has a number of “bad 
points” at which the second derivatives of the free energy show 
anomalous behavior. Since these points are isolated, they must 
arise not from deficiencies in the underlying thermodynamic 
description but instead from some localized numerical quirk. 
A few of these points are found in the six isotherms under con- 
sideration, and we corrected the discordant values by a simple 
interpolation in density. These points are located at (log T, 
logp): (4.10, -5.667), (4.50, -3.667), (5.30, -2.333) for Vad. 

The quantities we have compared are log P, log U and Vad 
for all six isotherms. Exceptions to this rule are the MHD EOS, 
which has no points at log T = 6.10 and 6.90, because the table 
supplied to us is limited to log T < 6, and the MM EOS, which 
tabulates only log P, Vad, and Cp, the specific heat. This last 
quantity is not used in the present comparison. The LANL 
EOS tables available to us provide only P and U. The second 
derivatives were not generated from these tables to avoid intro- 
ducing spurious differentiation and interpolation errors. Note 
that all quantities shown here are taken directly from the EOS 
tables and are not constructed from other quantities by using 
thermodynamic identities, for example. This avoids introduc- 
ing potential errors due to thermodynamic inconsistency in the 
EOS or numerical inaccuracies in the procedure. In all four 
cases, the zero of energy is chosen as the ground state of the H2 

molecule and the contribution of the photon gas is included. 
The four EOS are compared in Figures 21-23, and it is 

readily apparent that the differences can be substantial. As a 
point of reference, for the SC EOS the quantities P and U are 
within 1% of their ideal gas value for log p < —2. It is easy to 
verify that the nonideal terms are very small at such low densi- 
ties simply by comparing the volume occupied by atoms (or 
molecules) to the total volume. Surprisingly, significant 
differences with some of the other EOS are found even for den- 
sities below log p = —2. 

9.1.1. The Pressure 

Figure 2\a shows the pressure for four EOS along the six 
isotherms. At densities above and below the range shown in 
this figure, the agreement is satisfactory. The hottest two iso- 
therms correspond to a fully ionized gas of H+ and e interact- 
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Fig. 2\a Fig. 2\b 

Fig. 21.—Comparison of pressure isotherms, (a) the SC(I) (interpolated), FGVH, MHD, and MM equations of state, (b) The SC(T) (with PPT), 
LANL, and MHD equations of state. The isotherms are (from top to bottom)-, log T = 6.90, 6.10, 5.30,4.50, 4.10, and 3.70. 

ing weakly in the Debye-Hückel limit. The photon pressure 
dominates gas pressure when P becomes independent of p 
along the log T = 6.90 curve. The agreement is excellent in this 
relatively simple regime but severe divergences are found at 
lower temperatures. Curiously, the MM EOS systematically 
overestimates P at low densities, where the gas is ideal for all 
practical purposes. This is most likely due to an overestimate 
of the degree of dissociation and perhaps ionization which 
arises from their treatment of the IFF of H and of H2.

9 

For the lowest three isotherms, the MHD and FGVH EOS 
predict much higher pressures than either the SC or the MM 
EOS at moderate densities. The high pressures of FGVH and 
MHD are caused by the hard sphere potential they used to 
model the interactions between neutral particles. This poten- 
tial qualitatively models the strongly repulsive cores of the ac- 
tual potentials, but being infinitely repulsive, it fails to describe 
adequately the softness of the repulsion. This feature of neu- 
tral-neutral interactions becomes important at high densities. 
The hard sphere potential is too repulsive at high densities and 
leads to overestimated pressures even in a regime where the gas 
should be nearly ideal. The authors of the MHD EOS point out 
that their EOS should not be used for log p > -2, a safe limit at 
low T in view of the above observation. 

In the regime of pressure ionization (—0.5 < log p < 0.5), 
the SC, MM, and FGVH EOS can differ by up to a factor of 2 in 
P. In all three cases, thermodynamic quantities were smoothly 
interpolated between a low-density and a high-density regime 
where the authors felt that their respective EOS were reliable. 

In Figure 2\b, we compare the SC EOS (with the PPT), 

9 Their IFF for H2 has been corrected since we obtained the MM table 
in 1987 (Mazzitelli 1993). 

LANL, and MHD, the latter being common to both Figures 
2\a and 2\b. This comparison shows that the LANL EOS 
agrees quite well with the SC EOS, the PPT being revealed by 
the density discontinuity on each of the lowest two isotherms. 
Breaks in the lowest two LANL curves are similarly due to a 
transition to a metallic solid hydrogen phase, although the 
transition itself is not explicitly plotted here, unlike the SC(P) 
case. This is qualitatively different from the PPT of SC, since 
the SC EOS predicts that metallic hydrogen is in a fluid state 
above the PPT. 

9.1.2. Internal Energy 

Most of the features discussed above can also be seen in the 
internal energy U, shown in Figure 22. Again, we see that for 
log T < 4.50 and log p > -2, the hard-sphere model used by 
FGVH and MHD leads to an overestimate of U (Fig. 22a). 
The log p = —2 limit recommended by MHD is a sensible 
choice for U as well as for P. 

The two intermediate isotherms illustrate the importance of 
careful treatment of the influence of neighboring particles on 
the IPF. For the log T = 4.50 isotherm, SC lies above MHD, 
while the reverse is true for log T = 5.30. At these low densities, 
characteristic of the ideal gas, this arises from differences in the 
degree of ionization, which is directly affected by the IPF of 
atomic hydrogen. At these temperatures, thermal excitation of 
H becomes significant and the chemical equilibrium depends 
on the number of states retained in the IPF sum.10 This effect 

10 The SC and MHD EOS do not use a cutoff in the IPF sum but instead 
remove the bound states gradually, following the “occupation-probability” 
formalism presented in Hummer & Mihalas ( 1988 ). It is nevertheless use- 
ful to think in terms of a sharp cutoff in the present context. 
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Fig. 22a Fig. 22b 

Fig. 22.—Comparison of internal energy isotherms, {a) SC( I) (interpolated), FGVH, and MHD equations of state. (¿>) SC(P) (with PPT), LANL, and 
MHD equations of state. The isotherms are (from top to bottom): log T = 6.90, 6.10, 5.30,4.50, 4.10, and 3.70. 

is not visible in the pressure because it is relatively insensitive 
to the excitation energies of bound species. 

At log T = 4.50, the degree of ionization is sufficiently low 
for the finite “sizes” of atoms to provide the main nonideal 
contribution. This, in effect, is an “excluded volume” interac- 
tion, which removes the upper levels of the IPF to ensure that 
the atoms do not “overlap.” MHD adopted a fixed and some- 
what arbitrary diameter for the H atom in its ground state 
(1.06 A) while SC use a thermodynamic criterion (SCI) to 
compute a temperature- and density-dependent value ranging 
from 1.1 to ^ 1.6 A. Fewer states are retained in the IPF when 
the hard-sphere diameter is larger, favoring a higher degree of 
ionization in the SC EOS and a larger U. Because the SC EOS 
uses more realistic interaction potentials between neutral par- 
ticles and a thermodynamic criterion to obtain the hard sphere 
diameters of H and H2, we believe that it is more reliable in 
this regime than the MHD EOS. 

The situation is quite different along the log 7 = 5.30 iso- 
therm, where the degree of ionization is high, and atoms are 
surrounded mostly by charged particles. As discussed in 
§3.2.1, the motion of the ions and electrons induce a fluctuat- 
ing micro-electric field which can cause Stark ionization of the 
upper levels of the atom, thereby removing them from the IPF. 
Since this effect is missing in the SC EOS, the IPF retains too 
many states, and the degree of ionization as well as the internal 
energy are underestimated. According to Figure 22a, this effect 
is not very large for log p ^ -2, but the MHD EOS is never- 
theless more accurate in this regime. 

Along the log 7 = 5.30 isotherm, the MHD and the SC EOS 
differ most notably in the density range -1 < log p < 1. On 
this isotherm, pressure ionization occurs under conditions in 
which thermal excitation of the atoms is large (see § 3.1). 
While the MHD model is well beyond its limit of validity 

(log p < -2), none of the EOS presented here can be consid- 
ered truly reliable in this difficult regime. 

In Figure 22b, we again find that there is good agreement 
between the LANL and the SC EOS. Some small differences 
occur for the hottest two isotherms, as was the case with P. 
This is somewhat puzzling in a regime where the physics is so 
simple, but it is not of serious concern. One of the major sim- 
plifications employed in the LANL EOS is that each compo- 
nent of the D2, D, and D+ + £ mixture is allowed to be non- 
ideal, but they are mixed like an ideal gas. In this 
approximation, there are no interspecies interactions, and the 
chemical equilibrium does not depend on the composition. 
This approximation is closely related to the treatment of the 
IPF, and the resulting chemical equilibrium is suspect. This 
effect can be expected to be more pronounced in U than in 7, 
and indeed small deviations from both MHD and SC are found 
in lowest three isotherms of Figure 22b, even at very low den- 
sities. 

Such good quantitative agreement between LANL and SC 
for U and P is surprising, considering the 20 years of improved 
physical understanding of EOS which separate them. The 
LANL EOS was developed at a time when the H2-H2 potential 
was poorly known, fluid perturbation theories were in their in- 
fancy, and the properties of dense plasmas were just beginning 
to be explored with numerical simulations. As a consequence, 
the LANL EOS contains most of the relevant physics, but it is 
based on very approximate treatments for the nonideal contri- 
butions. A good number of ad hoc assumptions and interpola- 
tion formulae are used to bridge difficult regimes, and a close 
look at the model reveals internal inconsistencies between the 
treatment of bound states and the model for the interactions. 
For these reasons, we suspect that important differences might 
be found in the second derivatives of the free energy. Unfortu- 
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Fig. 23a Fig. 23b 

Fig. 23c 

Fig. 23.—Comparison of adiabatic gradient isotherms for (a) log T = 
3.70 and 4.10, (b) log T = 4.50 and 5.30, and (c) log T = 6.10 and 6.90. 

nately, these are not directly available to us, and the process of 
generating them from the P and U tables may itself introduce 
significant numerical inaccuracies. 

9.1.3. Adiabatic Gradient 

The adiabatic temperature gradient is a particularly interest- 
ing thermodynamic quantity, as it forms the basis of the 
Schwarzschild criterion for convective instability in stars. 

Comparisons among values for the adiabatic gradient obtained 
from the MM, MHD, FGVH, and the interpolated SC EOS 
along each of the six selected isotherms are shown in Figure 23. 
Figure 10 is helpful in understanding the behavior of Figure 23. 
Except in a few well known limits, figures of Vad are particularly 
difficult to interpret physically, and we limit the present discus- 
sion to a listing of the problems found in each EOS. 

Figure 23a shows the lowest isotherms over a wide density 
range. The overall structure is caused by partial dissociation 
and ionization, but a number of detailed features are immedi- 
ately apparent: 

1. Even at very low densities, where the gas is ideal, the 
agreement is not perfect. Differences of 10% are commonplace. 

2. The FGVH EOS can be very noisy. 
3. The MHD EOS shows pathological behavior for log p > 

—2, once again reinforcing their warning about not using their 
EOS above this limit. 

4. The SC EOS is not smooth in the regime of the fully ion- 
ized plasma (log p > 0.5 ). 

The next two isotherms are displayed on Fig. 23b. Again, the 
gross structure seen for log T7 = 4.50 is due to partial ionization. 
Hydrogen is nearly fully ionized everywhere along the log T = 
5.30 isotherm, and the drop to Vad = 0.25 at very low densities 
is due to the dominance of the photon gas in this regime. We 
find that 

1. There are still significant differences in the ideal gas re- 
gime. 

2. The FGVH EOS appears smoother in this regime. 
3. Above log p = —1.5, the MHD EOS shows pathological 

behavior along both isotherms. 
4. For the log T = 4.50 isotherm, the MM EOS shows a 

“phase lag.” This indicates an ionization zone which is dis- 
placed to comparatively higher densities and originates from 
their treatment of the IFF. 
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5. At the high-density ends of these isotherms, F > 10 and 
0 < 1, conditions under which the Coulomb interactions are 
strong. In FGVH and MM, these are described with a Thomas- 
Fermi-Dirac model, and both show Vad rising as the density is 
increased. On the other hand, SC use a screened one-compo- 
nent plasma model (SOCP; Chabrier 1990), a much more ac- 
curate description of the plasma, and find that Vad decreases 
along the isotherm. The SC EOS remains rather noisy in this 
regime. 

Finally, Figure 23 c shows the hottest two isotherms. For a 
pure photon gas, Vad = 0.25, and it approaches 0.4, the value 
for a noninteracting (ideal), classical, monatomic gas, as the 
pressure of the plasma comes into play. Both of these limits 
are readily apparent in this figure. The adiabatic gradient for a 
mixture of photons and noninteracting protons and electrons 
can be calculated analytically (Cox & Giuli 1968, § 9.17), a 
result accurately reproduced by both FGVH and SC; the diver- 
gence of the MM curves from the analytic expression cannot 
be explained on physical grounds. At high densities, Vad drops 
below 0.4 due to weak-to-moderate Coulomb interactions 
(T < 1 ). Both the FGVH and SC EOS agree quite well while 
the MM EOS displays an increase similar to that observed in 
Figure 23Z?. 

Figure 23 shows differences of as much as 10% in the ideal- 
gas regime of partial dissociation and ionization, underscoring 
the sensitivity of Vad to the treatment of the states in the IFF. 
When strong nonideal effects come into play, the adiabatic gra- 
dient is a rather poorly determined quantity. 

9.2. Comparison along a Solar Interior Profile 

Finally, in Figures 24-26, we compare the MHD and SC 
EOS along the interior profile for the Sun (Däppen 1993; see 
also curve c of Fig. 1 ). In this case, we consider the appropriate 
H/He mixing ratio, with Y = 0.257 at the surface of the Sun 

log p (g cm'3) 

log T (K) 

Fig. 24.—Abundance of H+ for the SC and the MHD EOS along the 
solar interior profile. The difference is shown by the dotted line, and the 
scale on the right. The density along this profile is indicated by the top 
scale. 

log p (g cm'3) 

log T (K) 

Fig . 25.—Same as Fig. 24 for the gas pressure 

and reaching 0.357 at the high-temperature boundary of the 
SC EOS (near the center). 

The degree of ionization of hydrogen along the solar (p, T) 
profile is illustrated in Figure 24. This shows the fraction of all 
hydrogen species that exist in the form of H+. The horizontal 
scale is linear in log T, and the corresponding density in the 
solar interior is given by the top scale. There is a significant 
difference between the prediction of the SC EOS (solid line) 
and that of the MHD EOS (dashed line). The difference is 
shown by the dotted curve and can be read off the right-hand 
scale. This displays dramatically the effect of the microfield on 
the bound states of the atoms, which favors a higher degree of 
ionization. Recall that the SC EOS does not include microfield 
effects, so that the MHD EOS is superior for solar model cal- 
culations. Note, however, that this quantity, X(H+), accentu- 

u 

log p (g cm'3) 

'Zn o 
k X o 

log T (K) 

Fig . 26.—Same as Fig. 24 for U = d log P/dlogp\s 
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ates the difference between these EOS. As the following figures 
show, these differences have relatively small effects on the ac- 
tual thermodynamic quantities. 

The pressure is shown on Figure 25. As expected, in this re- 
gime both EOS predict nearly identical pressures, to within a 
few percent. The dotted curve shows the difference in log P. At 
intermediate temperatures, the lower degree of ionization in 
the SC EOS results in a slightly lower pressure, since the parti- 
cle number density is lower. 

Figure 26 shows the adiabatic gradient Ti = d log P/ 
d log p\s, which is used in pulsation studies. The two troughs 
in T i are due to temperature ionization of H and of He, respec- 
tively. Due to the relative simplicity of the MHD free-energy 
model, the second derivatives of F in their EOS are analytic 
and the EOS is very smooth and free of numerical inaccuracies. 
We also expect that the MHD EOS has a very high degree of 
thermodynamic consistency. On the other hand, the SC EOS 
is somewhat noisier and differs from the MHD result because 
it underestimates the degree of ionization of hydrogen. The 
effect on P and T i, however, is small ( ^4% ). 

9.3. Other Equations of State 

Less detailed comparisons between the SC EOS and addi- 
tional equations of state used in astrophysical problems have 
also been performed. The H/He EOS of Marley & Hubbard 
(1988) was developed for modeling the interior of giant plan- 
ets. It shares many similarities with the model of SC, and under 
the low-temperature conditions relevant to giant planets 
(log T < 4) the two EOS are nearly identical. Differences arise 
in a narrow density domain centered on pressure ionization, 
where Marley & Hubbard simply interpolated between the 
dense molecular fluid and the fully pressure-ionized plasma. 
For log T > 4, their approximate treatment of temperature 
ionization leads to substantial disagreement. A more detailed 
discussion is given in Chabrier et al. ( 1992 ). 

Rogers (1981) has developed an EOS with an approach en- 
tirely different from FMIN, using an activity expansion which 
considers only protons and electrons interacting through the 
Coulomb potential. Bound states (atoms) arise naturally in 
this approach and are not treated as separate chemical species, 
as in the FMIN method. This approach is rigorous and funda- 
mental ( Rogers 1994 ), but because it is based on an expansion, 
it fails in regions where the expansion does not converge. Over 
the (p, T) domain where this complex method can presently 
be solved, it leads to the most accurate EOS currently available. 
While we have not compared the results of this calculation with 
the SC EOS, they have been compared with the MHD EOS 
under conditions appropriate to the solar envelope (see Däp- 
pen 1994 & Rogers 1994). The two equations of state are in 
extremely good agreement, with differences of less than 0.1 % in 
the second derivatives of the free energy. Although such small 
differences are important when comparing the computed solar 
oscillation spectrum to the wealth of extremely precise obser- 
vational data now becoming available, they are completely 
negligible in all other astrophysical situations. It is most satis- 
fying that two equations of state based on entirely different ap- 
proaches should agree so well. This indicates that our under- 
standing of the EOS of normal stellar material is now excellent, 
at least over some parts of the phase diagram. 

We have developed new equations of state for pure hydrogen 
and pure helium. Because we have treated the nonideal effects 
carefully, the resulting EOS are particularly appropriate for 
studies of cool, dense objects such as white dwarf envelopes, 
low-mass stars, brown dwarfs, and giant planets. The thermo- 
dynamic model for hydrogen is quite detailed and has been 
described extensively in Saumon ( 1990), SCI, and SC2. This 
model, summarized in the present paper, addresses the prob- 
lem of pressure ionization and predicts that it occurs discon- 
tinuously through a first-order phase transition, the so-called 
“plasma phase transition” (PPT). The helium model, how- 
ever, is simpler, but it is still very rehable over most of the phase 
diagram. Both EOS are based in part on experimental results, 
in part on recent progress in the theoretical description of 
dense plasmas, of fluid mixtures, and of bound states. Both 
agree very well with a variety of experimental results. We have 
taken a critical look at the underlying models and at the result- 
ing EOS and point out flaws by considering limiting behaviors, 
thermodynamic surfaces, and thermodynamic consistency. 
Equations of state for mixtures of H and He can be approxi- 
mated by using the additive-volume rule supplemented with 
an ideal entropy-of-mixing term. Finally, the new EOS is put 
into perspective by comparing it with several others developed 
for applications to astrophysical problems (mainly stellar 
interiors). 

This exercise has revealed that the current situation, al- 
though quite good in most regimes, is not as satisfactory as 
is commonly assumed. Much progress has been accomplished 
over the decades spanned by these EOS. This is due in part to 
new high-pressure experiments which probe the H2-H2 poten- 
tial to smaller interparticle separations, in part to the develop- 
ment of a solid understanding of dense plasmas through nu- 
merical simulation, and in part to a more acute awareness of 
the importance of consistency between the treatment of the 
internal partition function and the interactions between parti- 
cles. 

Each of these EOS has flaws or limitations, most of which 
can be addressed in the near future. The most challenging areas 
remain associated with partial dissociation and ionization. The 
treatment of temperature ionization with the FMIN method 
has improved considerably in the last few years, but none of 
the EOS presented here is entirely satisfactory in this regime. 
The more rigorous activity-expansion technique (Rogers 
1981) and the quantum virial expansion ( Alastuey 1994; Alas- 
tuey et al. 1994) may provide a definitive treatment of temper- 
ature ionization. Conversely, pressure ionization remains by 
far the most poorly understood phenomenon, and a shroud 
of uncertainty covers that part of the phase diagram, which is 
important for low-mass stars, brown dwarfs, and, most criti- 
cally, the Jovian planets. 

The comparison of the MHD and SC EOS under conditions 
appropriate to the solar interior indicates that the SC EOS, al- 
though good, is less accurate for this application. The MHD 
EOS (or the OPAL EOS of Rogers 1981 ) is a better choice for 
studies of stars with masses ^ 1 M©. However, the SC EOS is 
preferred for models of low-mass stars, where strong nonideal 
effects and molecule formation come into play. 

The main shortcomings of, and flaws in, the SC EOS—all 
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discussed here—are well understood. While it does not have a 
dramatic quantitative effect on the thermodynamics of hy- 
drogen, the fact that the model does not account for the effect 
of the plasma on the bound levels of the hydrogen atom is its 
most serious shortcoming. Introduction of a plasma microfield 
distribution that accounts for plasma coupling and screening 
( Gilles 1993 ) is in progress. Similarly, a detailed model for the 
free energy of helium is being developed (Aparicio & Chabrier 
1994). 

The four equation-of-state tables, much too extensive to be 
reproduced here, are presented in the AAS CD-ROM Series, 
Vol. 5 ( 1995). These tables are also available by anonymous 
ftp: 

%ftp ftp.lpl.arizona.edu 
username: anonymous 

ftp> cd dsaumon/eos 
ftp> mget * 
ftp> quit 
There is one table each for the interpolated hydrogen EOS 

and for the helium EOS, and two smaller tables are provided 
for interpolation near the hydrogen plasma phase transition, as 
explained in §§ 5.2 and 5.3. The first isotherm of the interpo- 
lated H EOS table is given in Table 2. Three additional files 

Vol. 99 

provide essential information. The seven files are in ASCII and 
occupy ~ 1 Mbyte of disk space. 
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