Pic picture

Home

Overview

Instructors

Course Info

Communications

Calendar

Notes

Videos

Problem Sets

Zoom

Email

Slack


 
 

PHYS 415: Electromagnetic Theory I
Prof. S. Teitel: stte@pas.rochester.edu ---- Fall 2023

Problem Set 6

Due Tuesday, October 31, uploaded to Blackboard by noon

  • Problem 1 [20 points]

    a) Consider a spherical shell of radius R, with uniform surface charge density σo, centered on the origin. The shell is spining counterclockwise about the z axis with angular velocity ω. Find the magnetic vector potential A(r), far from the sphere, using the magnetic dipole approximation. Find the magnetic field B within this approximation.

    b) Using the method of separation of variables, as applied to the scalar magnetic potential φM, find an expression for the exact magnetic field B both inside and outside the spining charged shell of part (a). How does your answer for the field outside compare with that obtained by the magnetic dipole approximation in part (a)?